Кто дальше бросит камень

Пробовали ли вы бросать камни или литой мяч для лапты? Если пробовали, то наверное заметили, что один раз камень (мяч) летит дальше, а другой раз ближе. Также заметили вы, вероятно, что некоторые из ваших друзей бросают почти всегда дальше вас, а другие ближе. Отчего это зависит? В чем секрет уменья бросать камни дальше других? На этот вопрос физика дает исчерпывающий ответ. Вот на рис. 8 показано, как летит камень.

Рис. 8

Рис. 8

. Искусство бросать камни: полет камня в безвоздушном пространстве при скорости броска 50 м в секунду.

Вы видите, что он описывает в воздухе дугу, которую, как и всякую линию движения тела, называют «траекторией». Если бы не было силы тяжести, т. е. камень не притягивался бы к земле, он полетел бы прямо по направлению броска. Но так как камень все время притягивается к земле, он не только летит вперед, но одновременно падает. Скорость его падения всегда одинакова и не зависит ни от уменья бросать, ни от веса камня. В первую секунду камень, падая, опустится вниз на 5 метров[7], во вторую секунду еще на 15 метров, в третью еще на 25 м и т. д. Значит, за первую секунду полета камень «упадет» на 5 метров, за вторую секунду на 20 метров (5+15), за третью — на 45 метров (20 + 25) и т. д. (см. рис. 8). Вот теперь и сравним, как далеко упадут камни, брошенные с разной силой и под разными углами к горизонту. Если сила броска будет больше, то, значит, и скорость, с какой он будет двигаться, также окажется больше. Влияние воздуха на летящий камень мы пока в расчет не будем принимать. Из. рисунков 8 и 9 ясно видно, что быстрее летящий камень, пролетая каждую секунду большее расстояние, упадет дальше, чем брошенный под тем же углом, но с меньшей скоростью.

Рис. 9

Рис. 9

. Полет камня в безвоздушном пространстве при скорости 25 м в секунду.

А теперь положим, что камни брошены с равной, скоростью, но под разными углами к горизонту (рис. 10).

Рис. 10

Рис. 10

. Полет камня в безвоздушном пространстве при различных углах бросания.

Тут, очевидно, дело не так просто. Камень, брошенный прямо вверх, т. е. под углом 90°, упадет на то же место, значит, дальность его полета — ноль. Камни, брошенные близко к этому углу, очевидно, далеко не полетят. Выходит, что есть какой-то угол бросания — больше 0°, но меньше 90°. Опыт и теория показывают, что таким углом в безвоздушном пространстве является угол, равный 45°. В воздухе наивыгоднейший угол броска получается несколько меньше, ок. 42–43°.

Итак, дальше упадет тот камень, который брошен с большей силой (а значит, и с большей скоростью) и направление броска которого ближе к 42–43°.

Проверьте это в поле, подобрав камни равного веса и, примерно, одинаковой формы, и вы убедитесь в правильности этого вывода. Это же правило вполне применимо к пулям и снарядам. Поэтому, чтобы дальше бросить пулю или снаряд, стараются сообщить им побольше начальную скорость, что достигается увеличением заряда пороха. Увеличивают также и угол бросания, но здесь чисто военные причины заставляют часто отказываться от наивыгоднейшего угла. Для примера отметим хотя бы необходимость пробить вертикальную стенку. Если снаряд будет брошен под большим углом, он упадет сверху и стенку не пробьет. А если его бросить «настильно», т. е. под малым углом, то при достаточной силе удара стенка окажется пробитой.

Интересно отметить, каких пределов достигла здесь военная техника. Очевидно, наивыгоднейший угол бросания изменить нельзя, поэтому тут как раньше, так и теперь у дальнобойных орудий, в зависимости от назначения их, стремятся лишь приблизиться к этому углу наклона. Что же касается силы броска, от которой зависит скорость полета снарядов, то с каждым годом техника дает нам новые достижения в этой области. Двадцать лет тому назад скорость полета снарядов не превышала 800 метров в секунду. Теперь же ряд орудий дает начальную скорость снарядов значительно больше 1 000 метров в секунду, и у некоторых образцов она достигает 1 500—1 700 метров в секунду! Чтобы понять как велики эти скорости, сравним их со скоростями других известных нам движений (рис. 11).

Рис. 11

Рис. 11

. В одну секунду проходят…

Однако не следует думать, что достижения здесь беспредельны. Уже сейчас для получения таких громадных скоростей в орудия кладут заряды пороха до 200 кг. Взрыв таких количеств пороха требует громадной прочности стволов, что достигается их утолщением.

Но опыт показал, что тут тоже есть предел, дальше которого утолщение ствола не повышает уже его прочность. Этим пока и ограничены дальнейшие увеличения скоростей полета снарядов, а значит, и дальности их броска.

Похожие книги из библиотеки

«Тигры» в снегу

Иллюстрированная летопись «Тигров» на Восточном фронте. Более 350 эксклюзивных фронтовых фотографий. Новое, дополненное и исправленное, издание бестселлера немецкого панцер-аса, на боевом счету которого 57 подбитых танков.

Альфред Руббель прошел войну «от звонка до звонка» — с 22 июня 1941 года до весны 45-го — в общей сложности 41 месяц на передовой. Ему довелось воевать и на Pz.IV ранних серий с короткой пушкой-«окурком», и на длинноствольном Pz.IVF2, и на «Тигре I», и на «Королевском Тигре». Он был ранен под Ленинградом, дрался под Волховом и на Кавказе, участвовал в битве за Харьков и операции «Цитадель», отступал к Днепру, прорывался из Черкасского «котла», но безнадежность войны осознал лишь в Венгрии, когда провалились последние попытки контрнаступлений Вермахта, а немецкая оборона окончательно рухнула под сокрушительными ударами Красной Армии…

Эта книга — уникальная возможность увидеть бойню Восточного фронта через прицел Pz.IV и из командирской башни грозного «Тигра».

Лёгкий танк Panzer I

В № 2 (29) за 2000 год журнала «Бронеколлекция» — приложения к журналу «Моделист-конструктор» — рассказывается об истории создания, устройстве и опыте боевого применения лёгкого немецкого танка Pz.I.

Космонавты Сталина. Межпланетный прорыв Советской Империи

Одним из главных и общепризнанных достижений Советского Союза считается прорыв в космос. Это был потрясающий воображение шаг, сделавший СССР не просто могущественной державой в ряду других держав, но государством, определяющим контуры Будущего. Первый спутник, первая собака на орбите, первый космонавт, первые межпланетные аппараты, первые групповые полеты, первые орбитальные станции - что можно добавить к этому великолепному списку?

Тем не менее, в истории советской космонавтики существуют пробелы. Авторы многочисленных книг часто замалчивают тот факт, что основные научно-технические достижения, предопределившие эту историю, были сделаны в эпоху Иосифа Сталина. Рассказу о ракетных разработках советских ученых и космонавтах Сталина посвящена новая книга Антона Первушина из цикла «Битва за звезды».

Книга снабжена библиографией, ссылками на сетевые ресурсы и богатым иллюстративным материалом.

Атомные субмарины США

В 1946 г. Конгресс США принял Акт по атомной энергии. Согласно Постановлению Конгресса США от 1946 г. создавалась Комиссия по атомной энергии, ответственная за практическое применение ядерных тех нологий в различных областях техники и народного хозяйства. Флот США делегировал ксптена Хюмэна Г. Риковера в Бюро по кораблестроению с целью проведения консультаций по вопросу использования атомных энерг етических установок на кораблях, в первую очередь – на подводных. В 1948 г. Комиссия по атомной энергии заключила контракт с фирмой Вестингауз Электрик на разработку, постройку и испытания прототипа водо-водяного реактора. Разработка такого реактора началась в 1950 г. силами специалистов Атомной лаборатории фирмы Вестингауз в Питтсбурге, шт. Пенсильвания. Реактор получил обозначение S1VV, «S» – submarine. «1» – первая модель. «W» – Westinghouse, Вестингауз. Для обозначения реакторов фирмы Дженерал Электрик использовалась буква «G» (General Electric), «с» – Combustion. Первый запуск реактора S1W состоялся 30 марта 1953 г. Этот реактор послужил прототипом реактора S2W, установленного в 1953 г. на первой в мире атомной подводной лодке SS-57I «Наутилус».