Главная / Библиотека / Минное оружие /
/ Классификация, устройство и принцип действия мин / Таблица 2. Основные тактико-технические характеристики противопехотных мин.

Глав: 8 | Статей: 37
Оглавление
В книге по материалам советской и иностранной печати рассказывается о развитии и использовании мин, их устройстве и принципах действия. Описываются методы постановки минновзрывных заграждений и способы их обезвреживания, рассказывается о системах дистанционного минирования.

Книга предназначена для молодежи, готовящейся к службе в армии.

Таблица 2. Основные тактико-технические характеристики противопехотных мин.

Таблица 2. Основные тактико-технические характеристики противопехотных мин.


Большинство противопехотных мин применяется о взрывателями МУВ (см. рис. 9) и МУВ-2. Взрыватель МУВ-2 отличается от МУВ тем, что имеет металлоэлемент — пластинку из мягкого металла, которая может удерживать ударник во взведенном положении не менее 2,5 мин после удаления предохранительной чеки.

Мина ПМД-6М фугасная нажимного действия (рис. 13).



Рис. 13. Противопехотная мина ПМД-6М:

1 — корпус; 2 — тротиловая шашка; 3 — крышка; 4 — прямоугольный паз; металлическая пластина; 6 — взрыватель МУВ-2; 7 — Т-образная чека.

Она состоит из деревянного корпуса, заряда ВВ (200-граммовая тротиловая шашка), взрывателя МУВ или МУВ-2 с Т-образной боевой чекой и запалом МД-2 или МД-5М.

Мину с открытой крышкой и вложенной в нее тротиловой шашкой устанавливают в лунку, вырытую в грунте с таким расчетом, чтобы крышка мины выступала над поверхностью грунта на 1…2 см. Затем в мину вставляют взрыватель, закрывают крышку и мину маскируют травой или слоем грунта не более 1…2 см. Предохранительную чеку удаляют из взрывателя после всех операций по установке и маскировке мины.

При нажатии на крышку мины она опускается вниз и выдергивает боевую чеку взрывателя, что приводит к его срабатыванию и взрыву мины.

Мина ПМН фугасная нажимного действия (рис. 14).



Рис. 14. Противопехотная мина ПМН.

Она состоит из пластмассового корпуса, заряда ВВ, нажимного устройства, спускового и ударного механизмов и запала МД.

Перед установкой мины ПМН в грунт проверяют наличие свинцовой пластинки под струной резака, вставляют в мину запал МД, завертывают заглушку. Мину устанавливают в лунку с возвышением 1…2 см над поверхностью грунта и маскируют.

После выдергивания предохранительной чеки резак под действием боевой пружины перерезает свинцовую пластинку и мина переходит в боевое положение, при этом ударник упирается в боевой выступ штока.

При нажатии на крышку мины ударник под действием боевой пружины накалывает запал МД, в результате чего происходит взрыв мины.

Зимой при глубине снега до 10 см мины ПМД-6 и ПМН устанавливают на грунт, а при большей глубине — на утрамбованный снег, и маскируют слоем снега толщиной не более 6 см.

Мины типа ПМД-6 и ПМН снимать и обезвреживать запрещается. Они уничтожаются на месте их установки.

Мина ПОМЗ-2М осколочная кругового поражения. Она состоит из чугунного корпуса, заряда ВВ, взрывателя МУВ-2 с запалом МД-5М и Р-образной боевой чекой. Кроме того, в комплект каждой мины входят два-три колышка, карабинчик с проволокой длиной 0,5 м и проволочная растяжка.

При натяжении проволочной растяжки выдергивается чека взрывателя и происходит взрыв заряда мины.

При взрыве заряда корпус мины дробится на осколки, которые разлетаются по радиальным направлениям, поражая живую силу противника.

Мина устанавливается с одной (рис. 15) или двумя ветвями проволочной растяжки.



Рис. 15. Установка ПОМЗ-2М с одной ветвью растяжки:

1 — мина; 2 — взрыватель; 3 — боевая чека; 4 — карабинчик; 5 — растяжка; 6 — колышек растяжки; 7 — установочный колышек.

Для установки мины с одной ветвью проволочной растяжки надо забить в грунт колышек, закрепить за него растяжку с карабинчиком и растянуть ее в сторону установки мины; на месте установки мины забить установочный колышек с возвышением над грунтом на 5…7 см; вложить в корпус мины 75-граммовую тротиловую шашку запальным гнездом внутрь мины и насадить корпус мины с шашкой на установочный колышек; соединить взрыватель МУВ-2 с запалом и ввинтить (вставить) его в верхнее отверстие корпуса мины, зацепить карабинчик за боевую чеку взрывателя и, убедившись, что чека надежно удерживается, вытащить предохранительную чеку МУВ-2 (или шпильку МУВ).

Снимать и обезвреживать мины ПОМЗ-2М, установленные с взрывателем МУВ-2, запрещается.

Мина ОЗМ-4 (рис. 16) осколочная, выпрыгивающая, кругового поражения.



Рис. 16. Противопехотная мина ОЗМ-4.

Она поставляется в комплекте, который состоит из неокончательно снаряженной мины, специального запала, неснаряженного взрывателя МУВ-2, проволочной растяжки с карабинчиком, намотанной на катушке, и двух деревянных колышков.

Мина срабатывает от натяжения проволочной растяжки, при этом выдергивается чека из взрывателя МУВ-2. При срабатывании взрывателя накалывается капсюль-воспламенитель и луч огня по трубке передается вышибному заряду. Под действием вышибного заряда (15 г) дно мины отрывается по месту резьбового соединения, и мина выбрасывается на высоту, равную длине натяжного тросика (0,6…0,8 м). При натяжении троса ударник сжимает боевую пружину и, освобождаясь, накалывает запал. Запал взрывается и вызывает взрыв заряда ВВ мины. Корпус мины дробится на осколки, которые, разлетаясь, наносят поражение.

Для установки мины в грунт отрывают лунку по диаметру мины глубиной 17…18 см; на расстоянии 0,5 м от лунки забивают первый колышек растяжки; в центральное отверстие мины вставляют запал; растягивают проволочную растяжку и забивают второй колышек-растяжку; навинчивают взрыватель МУВ-2 на ниппель; маскируют мину; цепляют карабинчик проволочной растяжки за кольцо боевой чеки взрывателя так, чтобы проволока имела небольшую слабину, а боевая чека прочно удерживалась в штоке ударника; осторожно вынимают из взрывателя предохранительную чеку.

Мины ОЗМ-4 с взрывателем МУВ-2 снимать и обезвреживать запрещается. Они уничтожаются на месте установки.

При наличии снега осколочные мины натяжного действия устанавливают с заглублением в снег, при этом необходимо обеспечить устойчивое положение мин и колышков.

Коротко рассмотрим картину разлета взрывных газов при взрыве заряда ВВ.

Взрывные газы, образованные взрывом заряда ВВ мины, движутся в основном перпендикулярно к поверхности заряда (рис. 17).



Рис. 17. Картина разлета продуктов взрыва кубического заряда с детонатором, расположенным в центре.

Картину разлета взрывных газов можно увидеть, если в темноте сфотографировать взрыв прямоугольной шашки взрывчатого вещества, свободно подвешенной в воздухе. Если шашка имеет форму, близкую к кубу, то огненный факел будет иметь форму креста.

При взрыве мины ее корпус разрушается и его осколки (могут быть и готовые осколки) и взрывные газы разлетаются в стороны в основном перпендикулярно плоскости мины, выводя из строя живую силу и технику противника. Коэффициент полезного действия мин, особенно противотанковых, не слишком высок. Большая часть энергии взрыва не воздействует на объект поражения, а тратится впустую. Для вывода из строя современного танка, имеющего прочную и довольно толстую броню, необходимо много взрывчатого вещества. Так, американская мина М15 имеет 10 кг взрывчатки. Ее так и называют — тяжелая. Но увеличение массы мин ведет к усложнению их транспортировки. А в современной войне предполагается мины применять в массовом количестве. Где же выход? Выход нашли. Стали применять кумулятивные мины. Кумуляция — одно из наиболее интересных физических явлений. Кумулятивный эффект достигается путем создания у заряда взрывчатого вещества кумулятивной выемки в сторону поражаемого объекта. В основе кумулятивного эффекта лежит перераспределение энергии взрыва и ее концентрация в заданном направлении. Если в заряде с одной стороны сделать выемку, а капсюль-детонатор расположить на противоположной от нее стороне заряда так, чтобы детонация распространялась в сторону углубления, то действие взрыва в направлении оси выемки значительно увеличивается.

Кумулятивный эффект открыл в 1864 году русский военный инженер генерал М. Бересков, а в 1865 году капитан Д. Андриевский использовал это явление для создания капсюля-детонатора.

Эффективность кумулятивных зарядов поразительна. Энергия взрывных газов концентрируется в такой струе, которая может лететь со скоростью, превышающей вторую космическую (11,2 км/с), и обладает давлением при встрече с преградой в несколько миллионов атмосфер и температурой порядка несколько тысяч градусов.

Для получения такого эффекта необходимо в мине применить заряд с выемкой определенной формы. Наибольшее распространение получили выемки сферической формы (рис. 18).



Рис. 18. Схема кумуляции взрывных газов:

1 — заряд ВВ; 2 — кумулятивная выемка; 3 — кумулятивная струя; 4 — место инициирования заряда.



Рис. 19. Отверстия в броневой плите, пробитые кумулятивными зарядами, изготовленными в войсках.

При взрыве заряда взрывные газы разлетаются перпендикулярно поверхности выемки. Сходящиеся струи газов соударяются друг с другом и образуют очень мощный газовый поток, направленный вдоль оси кумулятивной выемки.

Явление кумуляции значительно возрастет, если выемку покрыть металлической облицовкой из меди, железа, цинка и других металлов.

Впрочем, кумуляция возникает не только при взрыве. Это распространенное явление, на которое, однако, мы обращаем мало внимания. Простейший случай. Возьмем камень правильной формы и бросим его отвесно в воду. Камень, входя в воду, оставляет за собой полость в воде, которая быстро смыкается, так как вода со всех сторон устремляется к центру полости. Здесь потоки соударяются и резко тормозятся. В результате возникает повышенное давление и под его воздействием высоко вверх выбрасывается струя воды.

Миниатюрные явления кумуляции можно наблюдать на водной поверхности во время дождя в безветренную погоду.

До Великой Отечественной войны практическое значение кумуляции недооценивалось.

Необходимость борьбы с танками снова заставила вспомнить кумулятивный эффект. Стали создаваться кумулятивные снаряды и бомбы, взрыв которых с поразительной легкостью пронизывал броню, поджигал горючее, вызывал взрыв боеприпасов, уничтожал оборудование танка.

В послевоенный период в армиях США, Франции, Швеции, СССР и других стран были приняты на вооружение кумулятивные мины (рис. 20, 21).



Рис. 20. Противотанковая кумулятивная мина Советской Армии ТМК-2.


Рис. 21. Кумулятивные мины армии США:

а — противотанковая М21; б — противопехотная М25.

В качестве привода в противотанковых кумулятивных минах применили выступающие над поверхностью грунта штыри. Поэтому такие мины взрываются не только под гусеницами танка, но и под его днищем. А это, в свою очередь, позволяет уменьшить расход мин в минном поле почти вдвое, не уменьшая его эффективности.

В противотанковых минах, устанавливаемых дистанционными средствами, кумулятивный эффект применяется широко. В качестве взрывателей в них в основном используются неконтактные электронные взрыватели.

В последние годы в минах используют принцип ударного ядра (рис. 22).



Рис. 22. Схема формирования ударного ядра:

1 — взрывчатое вещество; 2 — облицовка выемки; 3 — ударное ядро; 4 — детонатор.

Основой такой мины является кумулятивный заряд с полусферической или широкой конической выемкой с облицовкой из металла (обычно из меди). При взрыве такой мины из облицовки образуется ударное ядро стреловидной формы, обладающее весьма высокой кинетической энергией, с начальной скоростью 2000… 4000 м/с. По зарубежным данным, подобная мина диаметром 150 мм и длиной 200 мм способна на дальности до 150 м пробить 80-миллиметровую броневую плиту.

Оглавление книги

Реклама

Генерация: 0.058. Запросов К БД/Cache: 0 / 0