Глав: 20 | Статей: 79
Оглавление
Книги, кино и сериалы на тему глобальной катастрофы, которая меняет наш привычный мир, заставляют задуматься: а что бы я сделал на месте героев? Куда бежать, чем запасаться и как не превратиться в дикаря из «Безумного Макса», а заново построить все с нуля? Научный журналист Льюис Дартнелл знает ответы на эти вопросы. Его книга — кладезь научно-технических знаний, которые помогут восстановить цивилизацию: от советов, как получить питьевую воду из подручных средств, до объяснения, как собрать двигатель внутреннего сгорания «на коленке».

Если думаете, что перед вами руководство для выживальщиков, то вы правы лишь частично. Цель книги «Цивилизация с нуля» — познакомить читателя с историей развития науки, показать, что большинство великих открытий сопровождает не «Эврика!», а «Хм… занятно» и что из всего накопленного опыта жизненно важно знать устройство базовых вещей и основы техники, а не 100 и 1 способ повысить свою эффективность.

Генерация и распределение

Генерация и распределение

Мы уже разобрали, как генератор превращает механическое движение в электрический ток, но откуда взять это движение? Очевидное решение — построить ветряк или водяное колесо и установить генератор там. Генератор хорошо работает, когда вращается со скоростью в сотни оборотов в минуту, поэтому вам понадобится система шестерен или ремней и блоков, чтобы ускорить мощное, но медленное вращение вала. Возрождающаяся цивилизация, видимо, будет похожа на стимпанковый винегрет разнородных технологий, со старинного вида четырехлопастными ветряными мельницами и водяными колесами, направляющими силу стихий не на помол зерна и подъем свайного молота, а на генерацию электричества для питания местной сети.

Проведенные в 2005 г. расчеты показали, что обычная ветряная мельница, дооборудованная вместо жерновов системой шестерен и генератором, может за год произвести 50 000 квт·ч электроэнергии — вчетверо больше, чем я расходую в своей квартире. Но, пожалуй, самый вдохновляющий пример, чего можно достичь, располагая лишь простейшими технологиями, оставил нам американский изобретатель Чарльз Френсис Браш. В 1887 г. он построил у себя в саду башню-ветряк с 17-метровым в диаметре колесом, состоявшим из 144 лопастей, выполненных из тонких, выгнутых кедровых реек. Эта электростанция вырабатывала более киловатта электричества, которое Браш пустил на питание доброй сотни ламп накаливания — они на тот момент тоже были передовой технологией, — освещавших его дом, а все излишки накапливал в 400 аккумуляторных батареях, размещенных в подвале.

Неудобство такой конструкции в том, что система множественных шестерен, необходимая для придания валу нужной скорости вращения, отнимает слишком много энергии. Для ветрогенераторов проблема снимается кардинальным изменением системы. Вместо широких лопастей-парусов, захватывающих много ветра, но создающих мощную турбулентность и торможение, а значит, неспособных к скоростному вращению, современные ветряки используют три длинных и узких лопасти-лезвия. Система построена на знаниях аэродинамики, полученных при разработке пропеллеров для самолетов и вертолетов, и хотя небольшая площадь поверхности означает, что при слабом ветре колесо вращается с трудом, зато, лишь подует посильнее, оно крутится с головокружительной скоростью и конвертирует в электричество гораздо большую часть механической энергии.

У водяного колеса выходная мощность тоже ограниченна. Количество энергии, содержащееся в потоке воды, зависит от его мощности и высоты падения. Мощность потока — это объем жидкости, протекающий за единицу времени, а высота падения в случае с верхнебойным водяным колесом — расстояние между желобом и лотком. Энергетические возможности водяного колеса не особенно велики, оттого что максимальная высота падения струи ограничена диаметром колеса, а при диаметре больше 20 м колеса становятся слишком тяжелыми и потому неэффективными.

А вот водяные турбины, с другой стороны, таких ограничений не знают. Самая мощная в мире гидроэлектростанция «Три ущелья» на реке Янцзы создает перепад в 80 м между водным зеркалом водохранилища и турбинами в основании плотины, за счет чего и получает колоссальную энергию.

Лучшая турбина, которую вы можете построить для применения с большой высотой и небольшой мощностью потока (то есть под узкой трубой, выбрасывающей струю под высоким давлением), — это турбина Пелтона, состоящая из ковшей, расположенных на ободе колеса (немного похоже на уложенные кругом ложки). Принцип в том, чтобы струя воды не останавливалась в каждом ковше, но хитро разворачивалась и снова выплескивалась вперед. Каждый ковш выполняется в виде слегка искривленного ведра, как бы разделенного на две половины проходящим вдоль стенки гребнем, рассекающим падающую прямо в ковш струю так, чтобы она, разделившись строго надвое, завихрялась в обоих углублениях и выплескивалась через передний край ковша. Именно это изменение направления прикладывает к ковшу значительное усилие и вращает турбину, а струя бьет по очереди в каждый ковш, и колесо не останавливается.

Для обратной ситуации, когда высота потока у вас невелика, но велика его мощность, лучше подойдет турбина поперечного тока. Здесь вода направляется на вершину колеса с короткими изогнутыми лопастями, расположенными радиально, и толкает их сначала на входе в колесо, а затем, вторично, выходя из колеса в нижней точке. С первого взгляда эта конструкция напоминает традиционную водяную мельницу, но ее существенное отличие в том, что турбину вращает не вес падающей воды, улавливаемой лопастями, а струя, толкающая лопасти сзади.

Как пелтоновскую, так и поперечноточную турбину несложно изготовить, имея простые металлообрабатывающие станки, и сегодня обе они рекомендуются для развивающихся стран как технологии, для которых все можно произвести на месте. Они отлично подойдут для восстановления цивилизации в постапокалиптическом мире.

При всей эффективности ветрогенераторов и водяных турбин, использующих, к тому же, возобновляемые источники энергии, сегодня б?льшая часть электроэнергии генерируется иными способами. Век пара, строго говоря, на самом деле не закончился. Мы ушли от широкого применения паровых машин в двигателях станков или транспортных средств, но с помощью пара сегодня вырабатывается более 80 % всего потребляемого в мире электричества: котлы кипятит тепло, высвобождаемое при сжигании угля или газа либо при распаде нестабильных тяжелых атомов в ядерном реакторе.

Как мы уже видели, произвести тепло просто, а вот преобразовать тепловую энергию в механическую — это задача посложнее. Решить ее может паровая машина, но медленный ход поршня невозможно без энергопотерь превратить в быстрое вращение, пригодное для электрогенератора.


Решением стала турбина, основанная на удачной конструкции водяной турбины, но приспособленная под пар высокого давления. Работу совершает струя пара, либо бьющая по лопастям сзади, чтобы импульс вращал колесо (как в пелтоновской или поперечноточной турбине), либо отражающаяся от поверхности изогнутой лопасти, которую, как самолетное крыло, толкает сила противодействия. Существенная разница между водой и паром в том, что пар расширяется и движется быстрее, но теряет давление, поэтому большинство паровых турбин сочетают реактивное колесо для пара высокого давления пара с импульсным колесом ниже на валу, работающим от разреженного пара. Такая многоступенчатая паровая турбина позволяет весьма производительно генерировать огромные объемы электроэнергии, и ее применение открыло новый электрический век.

Однако, сколь бы эффективной ни была турбина, полученную электроэнергию еще нужно доставить туда, где она нужна.

Вы можете соорудить генератор, который будет вырабатывать устойчивый постоянный ток (как в аккумуляторе), но легче собрать генератор переменного тока, быстро циклически изменяющегося с вращением ротора. Напряжение, возникающее в обмотке, меняется с положительного на отрицательное и обратно, поэтому ток, который оно вызывает, тоже постоянно меняет направление, летая туда-сюда по проводнику, наподобие стремительного прилива и отлива. Переменный ток имеет одно важное преимущество перед постоянным: он изящно решает проблему транспортировки электричества с электростанции до места его потребления — городов и промышленных объектов.

Как только вы захотите послать электроны по распределительной сети, состоящей из металлических проводов, вы тут же столкнетесь с коренной трудностью. Мощность вырабатываемого электрического тока определяется произведением силы тока и напряжения. Если сила тока велика, сопротивление проводов будет их неизбежно нагревать, и вы потеряете большую часть драгоценного электричества, которое произвели. (В то же время электрическое сопротивление — это свойство, которое намеренно эксплуатируют в нагревательных элементах чайника, тостера и фена, а если тонкую металлическую нить удастся разогреть до того, что она засветится, и притом не сжечь, то, значит, вы освоили технологию лампы накаливания.) Единственный вариант передать ток высокой мощности — уменьшить силу тока и повысить напряжение. Тут есть трудность: высокое напряжение слишком опасно; оно допустимо для проводов, протянутых между опорами высоко над землей за городом, но у себя дома вы точно постараетесь его избежать. Так вот, прелесть переменного тока в том, что он позволяет легко поднимать и опускать напряжение с помощью трансформаторов.

Трансформатор — это, по сути дела, два толстых мотка проволоки, насаженные один против другого на один железный сердечник в форме рамки, для того чтобы магнитное поле, создаваемое первой обмоткой, воздействовало на вторую. Согласно принципу индукции, о котором мы говорили выше (с. 184), переменный ток, пропущенный через первичную обмотку, создает быстро колеблющееся электромагнитное поле — возникающее и исчезающее более сотни раз за секунду, — которое в свою очередь создает переменный ток во вторичной обмотке. А теперь смотрите, в чем фокус. Если во вторичной обмотке витков больше, чем в первичной, напряжение растет, а сила тока падает: трансформатор — вроде электрического валютообменника, он конвертирует силу тока в напряжение. Таким образом, с помощью трансформаторов вы можете регулировать напряжение на разных участках распределительной сети, чтобы где нужно снизить силу тока, оборачивающуюся высоким сопротивлением, а где нужно — опасное для жизни напряжение.

Прелесть электричества в том, что можно размещать промышленные объекты не только на вершинах обдуваемых сильным ветром холмов, на берегах быстрых рек или неподалеку от лесов и угольных шахт, как приходилось поступать нашим предкам до XIX столетия. В этих местах останутся только электрогенераторы, а энергия по проводам пойдет куда нужно. Мы привыкли к такому положению вещей. Но всего лишь 100 лет назад всю энергию, необходимую для обслуживания дома, нужно было доставлять туда в материальном воплощении: керосин для ламп, уголь или дрова для обогрева и готовки. На задних дворах викторианских домов имелись дворовые угольные бункеры размером с небольшую жилую комнату, чтобы держать запас топлива на всю зиму. Сегодня электричество приходит в каждое помещение и приносит энергию для всех домашних нужд — чистую, бесшумную, не занимающую места.

Постоянный ток поможет человеческому сообществу приподняться из руин в первые недели после катастрофы, он доставит энергию по коротким трассам, например от ветрогенератора до жилищ, и зарядит аккумуляторы. Однако если на дальнейших этапах восстановления хозяйства вы задумаетесь о выгодах крупных и мощных электростанций, тогда понадобится создавать распределительные сети переменного тока. К тому же в мире, где люди будут страдать от жесткой нехватки энергии, тепло, полученное от сгорания топлива, лучше использовать по максимуму. Комбинированные теплоэлектростанции (ТЭС) изменили абсурдную ситуацию, когда тепло уходило впустую через градирни электростанций, а тем временем для отопления ближних городских кварталов сжигалось топливо. По использованию ТЭС в мире лидируют Швеция и Дания: там горячий пар, применяемый для вращения турбин и генераторов, в дальнейшем, например, идет на обогрев зданий по соседству от станции. Котлы топятся природным газом или биотопливом: отходами деревообработки, лесом с возобновляемых вырубок или отходами сельского хозяйства, и эффективность генерации электроэнергии и производства тепла приближается к 90 %.

В дни перезагрузки, вероятно, привычным станет зрелище телег, запряженных тягловыми животными, а может, и переоборудованных под газ грузовиков, везущих пиленый лес или компост с окрестных ферм на ТЭС, которые каждый квант полученной энергии пускают на производство электричества и тепла для ближних предприятий и жилых районов. Что ж, посмотрим, какими в постапокалиптическом мире будут средства передвижения.

Оглавление книги

Реклама
Похожие страницы

Генерация: 0.358. Запросов К БД/Cache: 3 / 1