Глав: 20 | Статей: 79
Оглавление
Книги, кино и сериалы на тему глобальной катастрофы, которая меняет наш привычный мир, заставляют задуматься: а что бы я сделал на месте героев? Куда бежать, чем запасаться и как не превратиться в дикаря из «Безумного Макса», а заново построить все с нуля? Научный журналист Льюис Дартнелл знает ответы на эти вопросы. Его книга — кладезь научно-технических знаний, которые помогут восстановить цивилизацию: от советов, как получить питьевую воду из подручных средств, до объяснения, как собрать двигатель внутреннего сгорания «на коленке».

Если думаете, что перед вами руководство для выживальщиков, то вы правы лишь частично. Цель книги «Цивилизация с нуля» — познакомить читателя с историей развития науки, показать, что большинство великих открытий сопровождает не «Эврика!», а «Хм… занятно» и что из всего накопленного опыта жизненно важно знать устройство базовых вещей и основы техники, а не 100 и 1 способ повысить свою эффективность.

Поддержание машин на ходу

Поддержание машин на ходу

Чуть дальше мы поговорим о немного различных принципах работы бензинового и дизельного двигателей, но сейчас достаточно будет сказать, что для них нужно разное топливо. И бензин, и дизельное топливо (соляр) — это жидкие смеси углеводородов: их молекулы подобны молекулам растительных масел, описанным в главе 5. Бензин — это набор углеводородов с хребтами в основном длиной в 5–10 атомов углерода; дизтопливо несколько тяжелее, это более вязкая жидкость, составляющие ее молекулы длиннее: от 10 до 20 атомов. Как мы говорили выше, после апокалипсиса останутся немалые запасы этих видов топлива — на автозаправках, в нефтехранилищах, наконец в баках брошенных транспортных средств. Однако довольно скоро людям, пережившим конец света, придется налаживать новое производство топлива, чтобы поддерживать механизацию сельского хозяйства и моторный транспорт.

Сегодня бензин и дизельное топливо получают, перерабатывая сырую нефть. Методы переработки относительно просты и вполне применимы для малых объемов производства. Жидкие фракции отделяют путем дробной перегонки, по тому же принципу, на котором основана дистилляция спирта из сброженного сусла. Фракции с крупными углеводородными молекулами можно расщепить на более удобные короткомолекулярные жидкости путем нагрева с глиноземным катализатором (например, толченой пемзой).

Трудность обеспечения топливом не в том, как его выделить из сырой нефти, а в том, что добыть сырую нефть из недр Земли уже невозможно без сложного бурового оборудования и морских платформ. Но при этом автомобильное топливо можно получить и не из нефти, и постaпокалиптическое человечество многому могло бы научиться у нынешних «зеленых». Как писал в начале 1900-х гг. сам Рудольф Дизель, «энергию можно добыть из солнечного тепла, которое всегда будет доступно для земледелия, даже после истощения всех природных запасов твердого и жидкого топлива».

Удобная замена бензиновому транспорту — этиловый спирт (который, как мы видели в главе 4, производится путем ферментации). Мировой лидер по применению алкомобилей — Бразилия: там все машины работают либо на смеси бензина со спиртом (20 %), либо на чистом спирте. Даже во многих штатах США закон требует, чтобы бензин содержал определенную долю спирта (обычно до 10 %), при которой не требуется переделка двигателя. Не все знают, что конструкция знаменитого автомобиля Ford Model T позволяла заправлять его либо дистиллированным из нефти бензином, либо спиртом, и несколько спиртзаводов в США перерабатывали зерно на автомобильное топливо, пока введение сухого закона не положило конец спиртовым заправкам.

Промышленное производство этанола для заправки машин сдерживается необходимостью получать достаточно сахара для микробной ферментации. Культуры типа сахарного тростника, на котором основана бразильская экономика возобновляемого биотоплива, можно возделывать только в тропиках. И хотя сахара присутствуют в любых растительных организмах, составляя волокна целлюлозы, обеспечивающие растению скелет и опору, целлюлоза настолько прочна и химически стабильна, что сахар в ней крепко «заперт» и неизвлекаем. Куда удобнее и проще не пытаться выгнать из такой биомассы чистое топливо, годное для моторного транспорта, а дать ей перегнить в биореакторе и получить метан или просто отправить в топку котлов на электростанции.

Но и рокот дизелей в постапокалиптическом мире, скорее всего, не смолкнет. Дизельный двигатель довольно неприхотлив, он может работать на растительном масле, переработанном в биотопливо: делается это путем соединения масла с простейшим спиртом, метанолом, в щелочной среде (добавляется щелок — едкий натр или едкое кали — см. главу 5). Метанол, также называемый древесным спиртом, можно получить сухой перегонкой дерева, но для реакции с маслом подойдет и полученный путем ферментации. Все остатки метанола или щелока, как и ненужные побочно получаемые глицерин и мыло, можно удалить, растворив в воде, барботированной сквозь готовое топливо, которое после этого тщательно просушивают нагревом, чтобы удалить воду.

Растительное масло годится практически любое. Для Британии хорошо подходит рапс: он дает с гектара большой объем масла (больше, чем другие культуры, в том числе подсолнечник и соевые бобы), которое легко отжимается из семени, а ботва служит питательным кормом для скота. При необходимости можно использовать и животные жиры. Технический жир получают, проваривая в воде мясную обрезь и кости: жир вытапливается, а затем всплывает на поверхность воды, откуда его после охлаждения собирают. Технический жир превращают в биотопливо точно так же, как и растительные масла, но присутствие длинномолекулярных углеводородов означает, что на холоде он может застыть прямо в баке.

Проблема биотоплива в том, что оно вырабатывается из сельскохозяйственных культур, и даже небольшому автомобилю, чтобы заправляться, понадобится поле площадью не меньше чем 0,2 га. Сценарий восстановления после апокалипсиса может оказаться таким, что продовольствие будет в дефиците. В таком случае следует подумать, нельзя ли заправлять машины топливом из несъедобного сырья.

Любой двигатель внутреннего сгорания работает, по сути, на газе, а не на жидком горючем. Из бензина или дизтоплива создается капельно-воздушная смесь, которая перед воспламенением в цилиндре испаряется. Поэтому другой способ сохранить моторный транспорт на ходу состоит в том, чтобы подавать горючий газ в двигатель прямо из баллона. Именно так работают современные газовые автомобили на сжатом природном газе (метане) или сжиженном нефтяном газе (смеси пропана и бутана).

Для постапокалиптического сценария, вероятно, лучше подойдет нетехнологичный вариант: если закачивание газа в емкости под давлением в сотни атмосфер окажется слишком сложным делом, можно оборудовать машины газовыми подушками. Эти подушки, бывшие в ходу в Первую и во Вторую мировые войны при дефиците топлива, представляли собой мешки из прорезиненной ткани, наполненные метаном или угольным газом, а 2–3 куб. м газа эквивалентны литру бензина.

Чуть менее громоздкий вариант — производить газ прямо на ходу, то есть построить автомобиль на дровяной топке.

Его конструкция основана на принципе газификации. Чтобы понять его, зажгите спичку и присмотритесь внимательнее к ее пламени. Вы заметите, что светящееся желтым пламя танцует не прямо на обугливающейся спичке, а как бы на расстоянии. Дело в том, что пламя питается в первую очередь не древесиной спички, а горючим газом, возникающим при тепловом разложении сложных органических молекул древесины, которые ярко загораются, только соединившись с атмосферным кислородом. Это тот же самый процесс пиролиза, который мы исследовали в контексте сухой дистилляции древесины и конденсации паров в различные полезные жидкости, но для производства моторного топлива нужен максимальный выход горючего «генераторного» газа, и необходимо отнести дерево от пламени гораздо дальше, чем на спичке. Газ не должен вспыхнуть, пока он не поступит в двигатель, где он может наконец смешаться с кислородом, чтобы, взорвавшись в цилиндрах, совершить полезную работу.


Во время Второй мировой войны для осуществления необходимых гражданских перевозок по европейским дорогам курсировал почти миллион газогенераторных автомобилей. В Германии разработали версию «Фольксвагена»-«жука», где все газогенераторное оборудование было спрятано внутри кузова, и только люк для загрузки дров в капоте указывал на необычный источник энергии, а в 1944 г. в войска вермахта поступило более 50 танков «Тигр» на дровяных генераторах.

Газогенератор — это, по сути, герметичный цилиндр с крышкой, и его можно изготовить из подручных материалов — например, оцинкованной урны, стального барабана и бытовой сантехнической арматуры. Дрова подкладываются сверху. Постепенно проваливаясь, они сначала высушиваются, а затем пиролизуются при высокой температуре в замкнутой камере и частично сгорают в ограниченном объеме кислорода, чтобы поддерживать необходимую для процесса температуру. Важно, что внизу колонны образуется слой раскаленного древесного угля и он реагирует с парами и газами, выделяющимися при пиролизе, чем и завершается их химическое превращение. После этого через отвод у дна колонны выходит готовый продукт — генераторный газ, богатый горючим водородом, метаном и угарным газом (последний ядовит, так что работайте только в хорошо проветриваемом месте) плюс инертный азот, составляющий до 60 % смеси. Охладите газ, чтобы конденсировались все примеси, иначе они могут засорить двигатель, а затем подавайте его в цилиндры.


Литр бензина заменяют примерно 3 кг древесины (зависит от ее плотности и влажности), и поэтому расход топлива у газогенераторных автомобилей измеряется не в литрах, а в килограммах на километр — генераторы времен войны позволяли проехать на килограмме дров примерно 2,4 км.

Топливо не единственный расходный материал, необходимый для автомобильного движения. Нужна еще резина, чтобы отливать шины, постоянно изнашивающиеся при езде, и камеры — баллоны в форме бублика, которые накачивают воздухом, чтобы смягчить тряску в пути.

Для практического применения свойства сырого каучука приходится корректировать с помощью вулканизации: его плавят с добавлением серы, а затем отливают в форму. В процессе вулканизации свернутые молекулярные цепочки сцепляются в тугую, упругую массу. Так получается практически неразрушимое вещество, более эластичное, чем природный каучук, но не плавящееся при нагреве и не трескающееся на холоде.

Проблема в том, что после вулканизации резину уже нельзя снова расплавить и отлить в новую форму. Постапокалиптическое сообщество не сможет утилизировать старую резину, чтобы иметь достаточный запас шин с четким протектором, а также, например, ниппелей и камер. Придется найти новый источник сырья.

Исторически каучук получали из млечного сока (латекса) дерева гевеи, которое растет только во влажном жарком климате, в узком поясе вдоль экватора. Альтернативный источник латекса — стебли, ветви и корни гваюлы. В отличие от гевеи этот невысокий кустарник обитает на полупустынных нагорьях Мексики и Техаса. Гваюла прославилась в годы Второй мировой, когда союзники после вторжения Японии в Юго-Восточную Азию потеряли 90 % каучуковых плантаций. На ранних стадиях постапокалиптического восстановления химические процессы, необходимые для производства синтетического каучука, будут человеку недоступны, поэтому к моменту истощения имевшихся запасов одной из главных задач станет налаживание дальних торговых связей — если вы не живете поблизости от источников природного латекса.

Даже если вы сумеете обеспечить машины топливом и резиной, все равно они не могут работать вечно. Сохранившийся парк неизбежно износится и разрушится, и, хотя какое-то время у вас будет возможность снимать запчасти с других машин, рано или поздно придется осваивать их производство. Изготовление деталей современных двигателей потребует сложных знаний и технологий, а также станков, позволяющих обрабатывать заготовки с нужной точностью, — мы говорили об этом в главе 6. И если эти условия не будут выполнены к моменту остановки последнего мотора, общество демеханизируется и деградирует еще на одну ступень. Какие запасные возможности останутся у вас в этой ситуации для поддержки жизненно важных областей: транспорта и сельского хозяйства?

Оглавление книги


Генерация: 0.622. Запросов К БД/Cache: 3 / 1