Глав: 20 | Статей: 79
Оглавление
Книги, кино и сериалы на тему глобальной катастрофы, которая меняет наш привычный мир, заставляют задуматься: а что бы я сделал на месте героев? Куда бежать, чем запасаться и как не превратиться в дикаря из «Безумного Макса», а заново построить все с нуля? Научный журналист Льюис Дартнелл знает ответы на эти вопросы. Его книга — кладезь научно-технических знаний, которые помогут восстановить цивилизацию: от советов, как получить питьевую воду из подручных средств, до объяснения, как собрать двигатель внутреннего сгорания «на коленке».

Если думаете, что перед вами руководство для выживальщиков, то вы правы лишь частично. Цель книги «Цивилизация с нуля» — познакомить читателя с историей развития науки, показать, что большинство великих открытий сопровождает не «Эврика!», а «Хм… занятно» и что из всего накопленного опыта жизненно важно знать устройство базовых вещей и основы техники, а не 100 и 1 способ повысить свою эффективность.

Изобретаем заново моторный транспорт

Изобретаем заново моторный транспорт

Настанет день, когда возрождающаяся цивилизация достигнет того уровня развития металлургии и технического конструирования, при котором возможно производство двигателей. Если сообщество откатилось к тягловым животным и парусам, как ему заново создать двигатель внутреннего сгорания, не располагая образцами, пережившими апокалипсис? Как устроено сердце, бьющееся под капотами наших машин?

Двигатель внутреннего сгорания — отличная иллюстрация того, что сложный механизм — это не более чем совокупность простых узлов самого разного происхождения, организованных неким новым образом для решения той или иной насущной задачи. Если бы можно было содрать с семейного авто металлическую шкуру и рассечь его, как живой организм, то внутри обнаружилось бы множество устройств и агрегатов, взаимодействующих, как органы и ткани в человеческом организме.

Каковы же главные принципы работы автомобиля и как собрать машину с нуля?

В главе 8 мы разобрали принцип работы двигателя внешнего сгорания: паровая машина движется за счет нагнетания в цилиндры пара из котла, который нагревается сожжением топлива. Гораздо более эффективный способ высвобождения химической энергии, заключенной в топливе, — это исключить посредника и заставить толкать части машины сам горячий газ, образующийся при сожжении. Если малое количество топлива перед воспламенением поместить в замкнутый объем цилиндра, взрывным расширением высвободившегося горячего газа можно будет вытолкнуть поршень и совершить полезную работу. Повторяя такой цикл по нескольку раз в секунду, получаем надежный и точный процесс развития мощности. Чтобы подготовить цилиндр к следующему взрыву, открывается клапан, и цилиндр вдавливается обратно, вытесняя, как шприц, отработанный газ, а затем вновь оттягивается, чтобы в цилиндр через другой клапан всосалась новая порция топлива. Перед воспламенением ее еще нужно немного сжать, чтобы она стала плотнее и нагрелась. Этот четырехтактный цикл и есть быстро пульсирующее сердце абсолютного большинства двигателей внутреннего сгорания.

Есть два способа поджечь топливо, поданное в цилиндр, и в этом состоит разница между современным бензиновым и дизельным двигателями. Летучие жидкости типа этанола (или бензина) можно превратить в газ, перед впрыском смешав их с воздухом в карбюраторе, а затем воспламенить электрической искрой пусковой свечи. Смеси более тяжелых углеводородных молекул, например дизельное топливо, можно вдувать в цилиндр в состоянии тонкой капельной взвеси в конце такта сжатия, чтобы испарить и воспламенить одновременно путем резкого подъема температуры в цилиндре за счет резкого сжатия воздуха. (Всякий, кто трогал патрубок ножного насоса после накачки колеса, замечал, как он нагревается от нагнетаемого воздуха.) Или же, как мы видели в начале этой главы, можно питать двигатель непосредственно газом, нагнетаемым в цилиндры.

Но чтобы машина двигалась вперед, нужно преобразовать возвратно-поступательное движение поршней в равномерное вращение, которое можно передать на колеса или пропеллер. Осуществляет это необходимое преобразование кривошип, как и в велосипеде. Кривошип в механизмах часто используется в паре с поворотным шатуном, соединяя элемент, совершающий возвратно-поступательное движение, с вращающимся валом (у велосипеда роль шатуна, соединенного с кривошипом педалей, исполняют ноги седока). Самое ранее известное нам применение этого полезнейшего механизма — римское водяное колесо (III в.), где кривошип преобразовывал вращение толкаемого рекой колеса в возвратно-поступательный ход пил на пилораме.

В современных моторах, объединяющих работу множества поршней, этот механизм слегка модифицирован — там есть коленчатый вал, состоящий из нескольких гнутых звеньев, составленных так, чтобы ход поршней вращал вал. Но несколько цилиндров, даже если они выполняют рабочий цикл в заданной последовательности, вращают вал не равномерно, а толчками, и поэтому нужно как-то стабилизировать его вращение. Здесь техническое решение заимствовано из античной гончарной технологии. На конце коленчатого вала крепится маховик, выполняющий точно ту же функцию, что и тяжелый каменный диск гончарного колеса, — он должен сохранять импульс и сглаживать рывки при вращении.

Другой древний механизм применяется для упорядоченного открывания и закрывания клапанов, чтобы впускать топливную смесь и выбрасывать отработанный газ в течение рабочего цикла. Кулачок имеет вытянутую, смещенную от центра форму, чтобы, вращаясь на распределительном валу, он в установленном ритме поднимал рычажок-коромысло или отбрасывал стержень-толкатель. В прошлом кулачковый механизм использовался в свайных молотах: энергия водяного колеса раз за разом поднимает молот, а падает он, нанося удар, спущенный вертящимся кулачком. Кулачковый механизм был известен древним грекам и появляется вновь в средневековых машинах XIV в. В современном двигателе внутреннего сгорания набор кулачков, вращаемых распределительным валом, обеспечивает точную синхронизацию работы впускных и выпускных клапанов с рабочим циклом цилиндров.


Если вы намерены установить двигатель на сухопутное транспортное средство, а не просто вращать им гребной винт судна, придется решить еще несколько технических задач. Разобравшись с устройством двигателя, придется перейти к следующему этапу — передаче вращения на колеса. Трансмиссия — одна из самых простых для понимания частей автомобиля; в сущности, это не более чем коробка, позволяющая выбрать, какие шестерни сцепить между собой, и работающая по тому же принципу, что и зубчатые передачи, восходящие к III в. до н. э. Двигатель внутреннего сгорания вращается с огромной частотой, и поэтому низкие передачи, когда вал трансмиссии сцепляется с шестерней, меньшей, чем на валу двигателя, используются, чтобы «обменять» частоту вращения на вращающее усилие. Оно нужно для ускорения или движения на подъем.

Смену шестерен облегчает еще один сопутствующий агрегат — диск сцепления. Во многих машинах вращение двигателя передается через диск с рельефной поверхностью, сцепленный с маховиком, — как ни странно, именно трение обеспечивает равномерность вращения. Специальный механизм позволяет разъединить маховик и диск сцепления, отцепив двигатель от карданного вала. Подобная система применялась в ранних деревообрабатывающих станках, например токарных, — так механизм станка отсоединялся от источника энергии.

Первые автомобили заимствовали трансмиссию у велосипедов и передавали вращение на заднюю ось посредством цепи и звезд. Более эффективный способ — карданный вал, но, чтобы он не сломался от сотрясений и толчков при езде, ему необходима некоторая степень гибкости. Как же придать жесткому стержню способность сгибаться в любом направлении, при этом передавая усилие? Решение в том, чтобы разместить в двух местах на валу универсальные шарниры. Такой шарнир состоит из пары соединенных муфт, его принцип был описан еще в 1545 г.

После того как ваша моторная колесница покатила, нужно изобрести средство для управления поворотными колесами прямо с водительского места. На первых автомобилях применялся румпель — тяж, посредством которого на судах управляли положением рулевого пера. Однако позже было найдено более удобное решение — тут пригодилась технология, восходящая к античным водяным часам, появившимся около 270 г. до н. э. Реечная передача — механизм, состоящий из зубчатого колеса и длинной планки с такими же зубцами. Рулевое колесо в кабине связано валом с зубчатым колесом, которое двигает рейку вправо и влево, поворачивая передние колеса.

Наконец, последняя техническая проблема возникает, если два колеса держатся на одной оси. Когда машина поворачивает, внешнее колесо должно вращаться чуть быстрее внутреннего, если же оба вращаются одной осью, они могут скользить и буксовать, снижая управляемость машины и изнашивая покрышки. Механизм, называемый дифференциалом и представляющий собой систему не более чем из четырех шестерен, позволяет передавать мощность на оба колеса, но вращать их с разной скоростью. Эта изящная конструкция в европейских механизмах появляется с 1720 г., но не исключено, что возникла еще в 1000 г. до н. э. в Китае.

Одним словом, заглянув в нутро новенького спортивного авто, соединяющего в себе новейшие технические достижения, вы обнаружите винегрет компонентов, заимствованных из механизмов, восходящих к далеким этапам человеческой истории: гончарного круга, римских лесопилок, свайного молота, токарного станка и водяных часов.

Двигатель внутреннего сгорания — чудесный аппарат, умеющий превращать химическую энергию топлива в равномерное движение и применяющийся сегодня на абсолютном большинстве транспортных машин (наряду с реактивным двигателем скоростных самолетов и паровой турбиной больших кораблей). Мы рассмотрели способы производства жидкого или газообразного топлива для таких двигателей, а полный топливный бак — это восхитительно емкий резервуар энергии, позволяющий покрывать без дозаправки большие расстояния, так что внутреннее сгорание непременно сыграет свою роль в организации наземного и водного транспорта в постапокалиптическом обществе, вышедшем на продвинутый этап восстановления. Есть, впрочем, своя трудность: без легкодоступных источников сырой нефти цивилизации, последующие за нашей, столкнутся с дефицитом топлива. Активный рост моторного транспорта, наблюдаемый с 1920-х гг. и поныне, обеспечен наличием дешевого бензина, подвозимого с нефтеперерабатывающих заводов. Каким же может быть альтернативный путь восстановления транспортной структуры в обществе, поднимающемся из пепла?

Возможно, вместо того чтобы пускать на отжим для дизельного биотоплива или в ферментацию на этанол лишь часть выращенного растения, проще будет сжечь весь урожай целиком. Вскипятить котлы под паровыми турбинами и произвести электричество — гораздо более рациональное использование солнечной энергии, запасенной вырубленным лесом или быстрорастущими энергетическими культурами типа проса или мисканта. Электричество, произведенное на возобновляемом биотопливе, а также энергией воды и ветра, потечет по проводам, чтобы оживить поезда и трамваи на рельсовых путях и зарядить батареи небольших автомобилей. Электромобиль на биомассе, полученной с гектара земли, пройдет больше, чем авто с двигателем внутреннего сгорания на топливе, выжатом из той же биомассы, и что важнее, котел, вертящий паротурбину, можно топить разными и грубыми растительными материалами, а для производства биотоплива их нужно отбирать. Если же электричество вы производите на теплоэлектростанции (ТЭС), то попутным теплом можно отапливать ближайшие здания. Обществу, стесненному в энергетических ресурсах, лучше решать проблемы комплексно, извлекая максимум пользы из потребляемого топлива, поэтому есть вероятность, что городской транспорт постапокалиптической цивилизации будет преимущественно электрическим.

Строго говоря, в свое время электромобили были довольно обычным делом. В начале ХХ в. на равных конкурировали три фундаментально различных направления в автомобилестроении, и электрокары успешно соперничали с паровыми и бензиновыми машинами, поскольку механически они значительно проще, не шумят и не дымят. В Чикаго они даже преобладали. В 1912 г., на который пришелся пик производства электромобилей, по дорогам Америки катались 30 000 бесшумных экипажей и еще 4000 ездили по Европе; в 1918 г. пятая часть берлинских такси была оснащена электромоторами.

Недостаток электромобиля, несущего собственный аккумулятор (не в пример трамваям и поездам, имеющим постоянный источник питания в виде контактного провода, протянутого над рельсами), в том, что даже объемная и массивная батарея хранит не так уж много энергии, а перезарядка отнимает много времени. Максимальный запас хода тех первых электромобилей составлял около 150 км[37], это больше, чем у конного экипажа, и вполне достаточно для внутригородских сообщений. А вместо того чтобы дожидаться восстановления заряда в батарее, можно просто заменить на специальной станции разряженный аккумулятор на полный: еще в 1900 г. на Манхэттене успешно работал парк электрических такси, располагавший центральной станцией, где севшие батареи моментально меняли на свежие.

Таким образом, сочетая двигатели внутреннего сгорания на биотопливе и электромобили, восстанавливающееся постапокалиптическое общество сможет удовлетворить свои транспортные нужды даже при дефиците нефти, которого не знала в свое время наша цивилизация. Теперь настало время перейти от транспортировки людей и грузов к трансляции идей: в следующей главе мы рассмотрим технологии связи.

Оглавление книги


Генерация: 0.136. Запросов К БД/Cache: 3 / 1