Электрическая связь

Электричество — удивительная материя: ток летит по проводу практически моментально и производит заметную нам работу вдали от места, где его включили, например зажигает свет в другой комнате. Но чтобы передать сигнал между зданиями, городами и даже странами, мало просто размотать провода с лампочками и мигать друг другу. Вам будет мешать электрическое сопротивление, гасящее энергию сигнала, и, для того чтобы зажечь лампочку на сколько-нибудь значительном удалении, просто не хватит напряжения. Однако подходящий электромагнит, снаряженный, как описано в главе 8, создаст заметное магнитное поле даже от слабого тока. Расположите над его концом неустойчиво сбалансированный металлический рычажок, и он послужит исключительно чувствительным переключателем, который при возникновении тока в магните будет замыкать цепь и активировать звонок. Релейный зуммер по разные концы длинной телеграфной линии помогает телеграфисту услышать электрический сигнал, посланный издалека.

Сообщения можно передавать побуквенно, обозначая каждую букву последовательностью длинных и коротких электрических сигналов — тире и точек. Вам только остается условиться с человеком на другом конце линии, как обозначается каждая буква, после этого можно обменяться первыми постапокалиптическими телеграфными письмами. Как вы построите систему кодирования, в сущности, неважно, но если вы заранее задумаетесь над тем, чтобы процесс был и быстрым, и надежным, то, вероятно, заново изобретете азбуку, весьма похожую на код Сэмюэля Морзе. У него наиболее употребительным буквам английского алфавита соответствуют самые простые комбинации: E — одна точка, T — тире, A — точка-тире, I — точка-точка.

Распределенные на равном расстоянии релейные радиостанции помогут передавать сигнал дальше по линии, так что вы сможете наладить глобальную сеть телеграфной связи. Но прокладка и содержание проводов через континенты и по океанскому дну — предприятие непростое. Не поискать ли более удобный способ? Нельзя ли наладить передачу электрических сигналов без хлопот с проводами, по которым бежит ток?

Рассмотрим поближе инь-яновскую взаимозависимость электричества и магнетизма. Если от колебаний электрического поля возникает магнитное поле, а колебания магнитного, в свою очередь, создают электрическое, значит, человеку под силу управлять колебаниями взаимно индуцирующихся энергий. Вообще-то такие электромагнитные волны (в отличие от волны на воде или звуковой волны) распространяются даже в полном вакууме, где нет материи, которая передавала бы возмущение: электричество и магнетизм вместе путешествуют по Вселенной, как призраки.

Золотой солнечный свет, льющийся в ваше окно, тоже не более чем сплетение электрического и магнитного полей. От рентгеновского аппарата, солярия, инфракрасных приборов ночного видения и микроволновых печей до радиолокации, телевидения и этой квинтэссенции современной жизни, бесплатного Wi-Fi, к которому я сейчас подключил свой ноутбук, — все это основано на разных формах света. Электромагнитный спектр — это широкая полоса частот, в которых колеблются соединенные электрическое и магнитное поля — от опасного интенсивного гамма-излучения до длинноволнового радио, и все эти волны распространяются со скоростью света.

Нас с вами интересуют именно радиоволны. Кроме того, что их относительно легко произвести и уловить, они могут переносить на большие расстояния информацию. Радиопередатчик и радиоприемник — вот технология, восстановление которой поможет вам наладить систему дальних коммуникаций.

Начнем с того, что попроще, — с приемника. Закиньте на дерево длинный кусок провода, нижний конец зачистите и воткните в землю для заземления. Это антенна, и быстрое колебание электромагнитного поля в проходящей радиоволне заставит электроны в металлическом проводе бегать вверх и вниз — создаст индуцированный переменный ток. Но для того чтобы присоединить сюда наушники и хоть что-то услышать, нужно найти способ отделить положительную или отрицательную половину волны, отбросив вторую.

Разрешить эту задачу поможет любой материал, пропускающий ток в одном направлении и блокирующий в противоположном: он «выпрямляет» переменный ток в серию импульсов постоянного. К счастью, таким волшебным и ценным свойством обладают многие кристаллы. Железный колчедан, прозванный за свою обманчивую наружность «самоварным золотом», прекрасно справляется с задачей, и его легко отыскать. Широко применяется в радиоприемниках с кристаллическими детекторами и другой минерал — галенит (сульфид свинца). Это основная руда свинца, ее богатые залежи есть по всему миру, в разные века человек добывал из нее свинец для изготовления водопроводных труб, церковных кровель, мушкетных пуль и свинцово-кислотных перезаряжаемых аккумуляторов.

Включите кристалл в цепь с антенной и наушниками, поместив его в металлическую капсулу и приделав к ней еще один контакт в виде тонкого провода, так называемый «кошачий ус». Выпрямление происходит в месте соединения кристалла и тонкого контакта, но этот эффект неустойчив, и требуется терпение, чтобы методом проб и ошибок определить оптимальное расположение этих двух частей. Однако даже в отсутствие радиопередачи это примитивное устройство может улавливать радиоизлучение, порождаемое природными явлениями, например грозами. По сути, примитивный радиопередатчик работает по принципу искрового генератора, создавая быстрые последовательности искусственных грозовых разрядов.

В искровых генераторах искра проскакивает между двумя контактами под высоким напряжением. Каждая такая искра вызывает в антенне движение электронов и испускание краткой серии радиоволн. Если передатчик ежесекундно производит тысячи искр, испуская быструю череду радиоволн, в наушниках приемника будет раздаваться жужжание. Смонтируйте выключатель на стороне низкого напряжения трансформатора, питающего разрядник, чтобы управлять разрядами и испусканием радиоволн и кодировать сообщение в тире и точках.

В идеале вам нужно передавать по радиоволнам звуки, чтобы радиооператоры могли переговариваться друг с другом или вести передачи на широкую аудиторию. Морзянка основана на полном прерывании и возобновлении сигнала, но, чтобы передавать звук, требуется более тонкое воздействие, так называемая модуляция несущего сигнала. Простейший алгоритм называется «амплитудная модуляция» (AM): интенсивность несущего сигнала плавно меняется в пределах двух крайних значений, изящный график звуковых колебаний как бы пропечатывается поверх размашистой амплитуды радиоволны. К счастью, кристаллический детектор отлично справляется с «демодуляцией» сигнала в приемнике. Односторонняя проводимость кристаллического перехода в соединении с выравнивающим действием конденсатора убирают высокочастотный несущий импульс, оставляя только голос оператора и музыку.

Но если в округе не единственный мощный передатчик, а хотя бы несколько, через такой примитивный приемник вы будете слышать нераспознаваемую мешанину разных сигналов: антенна улавливает все передачи на различных частотах и все это транслирует вам в наушники. Для точной настройки в систему нужно добавить некоторые компоненты. Настройка передатчика повышает эффективность передачи, раскладывая ее энергию по узким полосам радиочастотного спектра, а приемник выбирает из многоголосой какофонии всего радиоэфира ту полосу, которая вам нужна.

Как мы видели, радиоволна — это, в сущности, колебание, и составляющие ее электрическое и магнитное поля чередуются в некотором ритме, качаясь, будто маятник часов. Чтобы настроить радиоприемник или передатчик, нужно добавить устройство, которое электрически колеблется в определенной частоте и не реагирует на другие, близко расположенные частоты. Для этого используется явление резонанса.

Его можно представить следующим образом. Ребенок на качелях качается туда-сюда с определенной частотой, как любой маятник. Если в нужный момент вы слегка подталкиваете его, ребенок взлетает все выше и выше. Но если толкать не в ритме качания, все ваши усилия пропадут втуне.

Сконструировать простейший колебательный контур, поддерживающий заданную частоту, поможет восхитительно изящная комбинация конденсатора и индукционной катушки-дросселя. Конденсатор изготавливается из двух металлических пластин, разделенных слоем изоляции. Любая подача напряжения гонит электроны в одну из пластин, пока там не образуется негативный заряд такой емкости, что дальнейшее наполнение невозможно. Конденсатор служит хранилищем электрического заряда и испускает его одним резким мощным импульсом, как, например, во вспышке фотоаппарата. Катушка-дроссель — это, в сущности, электромагнит, но она делает кое-что поинтереснее, чем просто притягивает металлические предметы. Если сопротивление препятствует прохождению тока вообще, то индуктивность препятствует флуктуациям в потоке электронов. Таким образом, пара «конденсатор — дроссель» служит надежным запасом электрической энергии: конденсатор в форме поля между его пластинами, а дроссель — в виде магнитного поля, окружающего катушку. Соедините эти два устройства в цепь, и эта простая кольцевая электрическая цепь как по волшебству оживет.

Когда насыщенная электронами пластина конденсатора отдает свой заряд, ток идет по цепи и через индукционную катушку, где создается магнитное поле, пока заряд на пластинах не сравняется. Тогда магнитное поле на катушке исчезает, но до тех пор линии убывающего поля, проходя сквозь катушку, вызывают в ней ток (эффект генератора) и, значит, закачивают электроны в другую пластину конденсатора — удивительно, схлопывающееся магнитное поле способно какое-то время поддержать тот же самый ток, которым оно и создано. К тому времени, кода поле в дросселе исчезнет совсем, вторая пластина конденсатора полностью зарядится и запустит ток в противоположном направлении, и он опять пройдет через катушку.

И так энергия течет то туда, то сюда между конденсатором и дросселем, то и дело переходя из электрического поля в магнитное и обратно, как мятник, совершающий тысячи колебаний в секунду — на частоте радиоволны.

Прелесть этого очаровательно несложного колебательного контура именно в том, что работает он исключительно на своей природной частоте, не сбиваясь ни на какие другие. Вы можете изменить эту частоту, то есть перенастроить свой передатчик или приемник, изменив характеристики одного из двух компонентов. Легче это проделать с конденсатором: вращая полукруглые металлические пластины относительно друг друга, можно регулировать площадь их пересечения, а значит, максимум собираемого заряда. Ручка настройки на старых приемниках чаще всего и была соединена с переменным конденсатором в колебательном контуре. Современные передатчики и приемники настраиваются с такой точностью, что радиоэфир в наши дни нарезан на тончайшие ломтики, будто окорок на гастрономическом прилавке, и поделен под тысячи разных нужд: коммерческое радио- и телевещание, GPS-навигация, переговоры экстренных служб, управление воздушным движением, сотовая связь, беспроводной интернет и Bluetooth, радиоуправляемые игрушки и т. д. Искровые передатчики сейчас и вовсе запрещены: их радиоизлучение плохо сфокусировано и рассеивается по широкому диапазону, так что они серьезно засоряют области соседних частот.

Конечно, для передачи звуковых сообщений необходимы еще такие компоненты, как микрофон, преобразующий звуковые колебания в кривые напряжения электроцепи передатчика, и наушники, транслирующие полученные электрические импульсы обратно в звук. Фактически микрофон и наушники — это одно и то же устройство. И там, и там есть мембрана, которая, вибрируя, создает звук или улавливает его, присоединенная к катушке, внутри которой находится магнит, так что в обоих устройствах наблюдаются те же явления электромагнетизма, которые лежат в основе электромотора и электрогенератора.

Более чувствительный вариант радиостанции можно собрать, применив пьезокристалл, обладающий занятным свойством создавать при деформации электрическое напряжение. Кристаллические наушники с такой чувствительностью нужны, чтобы расслышать исчезающе слабый сигнал с «кошачьего уса». В качестве пьезокристалла отлично подойдет виннокислый калий-натрий, он же сегнетова соль — по имени французского аптекаря, впервые получившего это вещество в XVII в. Приготовить эту соль можно, смешав горячие растворы кальцинированной соды и кислой винно-калиевой соли (известной под названием «винный камень»), кристаллы которой оседают на стенках бочек, где выдерживается вино.

Можно не сомневаться, что постапокалиптическое человечество быстро возродит радиосвязь с нуля — даже без сложных волновых уравнений и без производственной базы для выпуска тонких радиоприборов. Это уже было в недавней истории.

Во Вторую мировую войну солдаты в траншеях на переднем крае и военнопленные в лагерях, чтобы слушать сводки с фронтов и музыку, собирали приемники из подручных средств. В этих остроумных конструкциях использовался широкий набор материалов, приспособленных под радиодетали. Антенны забрасывали на деревья или маскировали под бельевые веревки, а иногда использовали в этой роли даже проволочные заграждения. Для заземления хорошо служили холодные водопроводные трубы в лагерных бараках. Дроссели изготавливали, наматывая проволоку на картонную трубку, а раздобытый где-то голый провод изолировали свечным воском или, как в японских лагерях, жидким тестом из муки и пальмового масла. Переменные конденсаторы для настройки сооружали из фольги, например от сигаретных пачек, прокладывая ее изолирующими слоями газеты; получившийся широкий и плоский колебательный контур для компактности сворачивали в трубку.

Наушники смастерить значительно труднее, поэтому их чаще просто снимали с разбитых машин. Примитивную замену собирали, наматывая проволоку на стальные гвозди, на конце приспосабливая магнит, а на проволоку сверху пристраивая крышку от консервной жестянки, чтобы она слегка вибрировала под действием принятого сигнала.

Но, пожалуй, самого остроумного подхода потребовало создание такого необходимого устройства, как выпрямитель, снимающий звуковые частоты с несущего сигнала. Кристаллов вроде железного колчедана или галенита на фронте было не достать, но оказалось, что заржавленные бритвенные лезвия и окисленные медные монетки тоже годятся. Лезвие втыкали в кусок дерева рядом с разогнутой английской булавкой. К острию булавки прочно крепили (например, туго приматывали проволокой) заточенный грифель, и за счет своей упругости булавка отлично служила «кошачьим усом», позволяя точно настроить примыкание грифеля к поверхности окисленного металла, чтобы чисто демодулировать сигнал.

Кристаллические радиоприемники (как и «ржавчинно-грифельные» детекторы) прекрасны своей простотой и не нуждаются в источнике электропитания, поскольку получают необходимую для работы энергию прямо из уловленных радиоволн. Но кристаллический детектор ненадежен, и звук такой приемник производит негромкий. Решает эту проблему и дает начало новой революционной технологии, имеющей самый широкий спектр применений, вакуумная трубка — близкий родственник другого убиквиста современной цивилизации, электрической лампочки.

Как и лампочка Эдисона, вакуумная трубка состоит из металлической нити накаливания, помещенной в стеклянную капсулу, но есть важное отличие в том, что вокруг нити выставлен металлический экран, а внутри капсулы почти абсолютный вакуум. С нити, раскаленной добела, электроны отрываются и образуют вокруг нее облако-заряд. Это явление называется «термоэлектронная эмиссия» и используется в рентгеновских аппаратах, люминесцентных лампах, старых телевизорах и компьютерных мониторах. Если экран заряжен более положительно, чем нить, высвободившиеся электроны притягиваются к нему, и в нем возникает ток. В обратную сторону ток пойти не может, потому что металлический экран не нагревается и не испускает электронов, следовательно, такого рода диод (прибор с двумя металлическими контактами или электродами) действует подобно клапану, пропуская ток лишь в одну сторону. Основанный на совсем иных физических процессах, этот термоэлектронный клапан выполняет те же функции, что и кристаллические детекторы, и его можно сразу использовать как демодулятор в радиоприемниках. А одно простое дополнение к конструкции дает нам важнейшую инновацию и целый спектр небывалых возможностей.

Электрическая связь

Если взять обычный вакуумный диод и поместить между нитью накаливания и экраном проволочную спираль или сетку, можно наблюдать кое-что фантастическое. Такое трехконтактное устройство называется триодом, и, варьируя напряжение, подаваемое на сетку, можно влиять на ток, возникающий между нитью и экраном. Подавая на сетку небольшое отрицательное напряжение, мы отклоняем траектории электронов, испущенных нитью и летящих к экрану. Усилив напряжение, мы еще больше разредим их поток — это как пережимать коктейльную соломинку, дозируя прохождение напитка. Но главное — триод дает возможность, варьируя напряжение на одном из контактов, управлять напряжением на другом. Гениальное применение этого свойства заключается в том, что микроскопическими колебаниями малого напряжения на контрольной сетке можно вызвать значительные вариации напряжения на выходе. Вы усилили входящий сигнал.

Триод делает то, чего не могут кристаллы: усиливает полученный сигнал так, что через динамики его слышно во всей комнате. Также триод позволяет получать электрические колебания строго заданной частоты, что идеально для узкополосного несущего сигнала, и без труда накладывать на этот сигнал звуковую модуляцию. Все это важнейшие функции для радиовещания, но не менее полезны вакуумные радиолампы и в роли переключателей, регулирующих направление тока много быстрее механических рубильников. Монтируя множество таких ламп в одну сеть, где они управляют друг другом, можно выполнять математические вычисления и даже собирать полностью программируемые электронно-вычислительные машины[41].

Похожие книги из библиотеки

Hs 129 истребитель советских танков

Весной 1937 г. штабом люфтваффе был введен термин Schlachtflugzug (ударный самолет для поражения бронетехники и фортификационных укреплений противника) и объявлен конкурс на создание такой машины. В апреле того же года тактико-технические требования к «Schlachtflugzug» были разосланы на четыре авиастроительные фирмы: Гамбургер (позже Бломм и Фосс), Фокке-Вульф, Гота и Хеншель. В требованиях особо оговаривался состав силовой установки – два двигателя относительно малой мощности, малые геометрические размеры самолета, наличие бронестекла фонаря кабины толщиной не менее 75 мм, бронезащиты двигателей и члена экипажа, вооружение из двух 20-мм автоматических пушек и пулеметов. В отношении количества членов экипажа ясности не наблюдалось, но военные склонялись в пользу одноместной машины, считая, что защиты от атак из задней полусферы не потребуется. В целом же требования выглядели достаточно либеральными, чтобы не сказать размытыми, и не связывали свободу рук конструкторам.

Прим.: Полный комплект иллюстраций, расположенных как в печатном издании, подписи к иллюстрациям текстом.

Асы Люфтваффе пилоты Bf 109 на Средиземноморье

Краткие очерки о наиболее успешных асах Германии на Средиземноморье (в основном Северная Африка и Италия) Второй мировой войны

Прим.: Полный комплект иллюстраций, расположенных как в печатном издании, подписи к иллюстрациям текстом.

Битва за звезды-1. Ракетные системы докосмической эры

Перед вами книга, рассказывающая об одном из главных достижений XX века — космонавтике, которую весь мир считает символом прошлого столетия. Однако космонавтика стала не только областью современнейших исследований науки и достижений техники, но и полем битвы за космос двух мировых сверхдержав — СССР и США. Гонка вооружений, «холодная война» подталкивали ученых противоборствующих систем создавать все новые фантастические проекты, опережающие реальность.

Данный том посвящен ракетным системам докосмической эры.

Книга содержит большой иллюстративный материал и будет интересна как специалистам, так и любителям истории.

Броненосный крейсер “Адмирал Нахимов”

Имя самого знаменитого и любимого народом русского адмирала Павла Степановича Нахимова не было в почете ни у царских семей и их окружения, ни, как не парадоксально, у морских чиновников с адмиральскими погонами на плечах. Видимо, потому, что. занимая один из высочайших постов на юге России, П.С. Нахимов так никогда чиновником и не был, а всегда оставался моряком и флотоводцем. Лишь спустя тридцать лет после его гибели в его честь был назван корабль, которому и посвящен этот очерк, дополненный подлинными документами.