Главная / Библиотека / Шелест гранаты (издание второе) /
/ 4 Ионы — в дрейф! / 4.4 Попытка исследования ионной кинетики в ударно-сжатых газах: неожиданно получился плохой МГД-генератор

Глав: 7 | Статей: 53
Оглавление
Эта книга об оружии, но не только — она открывает причудливую мозаику явлений физического мира: химические и ядерные взрывы, разделение изотопов и магнитная гидродинамика, кинетика ионов в плотных газах и ударные волны в твердых телах, физика нейтронов и электроника больших токов, магнитная кумуляция и электродинамика. Обо всем этом автор рассказывает, не прибегая к сложному аппарату высшей математики. Для тех, кто пожелает ознакомиться с этими явлениями подробно, им же написано рассчитанное на подготовленного читателя учебное пособие для университетов и военных академий «Взрывы и волны».

В книге, которую держит в руках читатель, он найдет также исторические экскурсы, пронизанные иронией рассуждения о политике и политиках, а также — о персонажах замкнутого мира военной науки.

Во втором (электронном) издании переработан текст, существенно расширен иллюстративный ряд.

4.4 Попытка исследования ионной кинетики в ударно-сжатых газах: неожиданно получился плохой МГД-генератор

4.4

Попытка исследования ионной кинетики в ударно-сжатых газах: неожиданно получился плохой МГД-генератор

Известно, что в сильных ударных волнах происходит ионизация газа, более того, там существуют свободные электроны, потому что газ нагревается и отрицательные ионы диссоциируют. Значит, если в столбе такого газа разместить электроды и приложить к ним напряжение, то сначала из столба будут «вытянуты» электроны, а потом — не исключено, что осциллограф зарегистрирует нечто подобное «треугольнику» от тока нейтрализуемого объемного заряда положительных ионов. Данные о кинетике ионов при экстремальных состояниях газа, какие можно получить в мощной ударной волне, в литературе мне не встретились (потому-то они и вызвали интерес), но я совершенно не представлял даже порядки концентраций носителей заряда. В справочнике подробно описывались газодинамические параметры ударных волн в различных газах (скорость, плотность, давление, температура) и можно было самому рассчитать концентрацию заряженных частиц, используя уравнение Саха, но я допустил ошибку, занизив на много порядков результат. Если бы не она, возможно, не проводились бы и взрывные опыты: совсем недавно приходилось оценивать влияние пространственного заряда на дрейф ионов в трубке — там оно было пренебрежимым[76]. Те же плотности заряда, которые на самом деле существовали в мощной ударной волне, делали бессмысленными попытки полного разделения носителей разного знака, но выяснилось это позже.

На кафедре боеприпасов МВТУ старого знакомого встретили радушно, определили дни, когда можно было проводить опыты во взрывной камере, не мешая проведению лабораторных работ, на машине кафедры доставили из НИИВТ сборки, баллоны с благородными газами, а также подарки: изоляторы из особо прочной керамики, стеклянные сферы[77].



Рис. 4.6

Сверху — искровая теневая фотография взрыва стеклянной сферы. 1 — трубка для наддува сферы газом (к моменту опыта — пережатая); 2 — разбитая сфера; 3 — турбулентное течение воздуха, наполнявшего сферу; 4 — фронт ударной волны. Внизу — искровая теневая фотография обтекания плоской ударной волной 1 жесткого клина 2. Видны отраженная ударная волна 3 и вихревое движение воздуха 4.

…Как это обычно бывает, полученные во взрывных опытах осциллограммы токов совершенно не походили на те, которые предполагалось увидеть, и вообще — свидетельствовали о «чуде»: конденсатор довольно большой емкости не разряжался при ионизации газового промежутка, к которому он был подключен, а заряжался (рис. 4.7), причем заметно! Серию из несколько десятков опытов завершили, получив красивые, но совершенно непонятные осциллограммы. Нетривиальные результаты вызвали интерес, неоднократно опыты приходили посмотреть профессор В.Соловьев, старший научный сотрудник В. Селиванов. Отличный специалист по скоростной съемке, В. Брыков, снял взрывающиеся сборки и сходящуюся детонационную волну в заряде. Не остался в долгу и гость. Я узнал о трудностях, которые испытывали аспиранты, проводившие модельные опыты: надо было подорвать небольшой (несколько граммов) шар из взрывчатого вещества, но так, чтобы детонационная волна была сферической, то есть — инициировать взрыв точно в центре шара. Обычный детонатор для этого не подходил: им формировался форс газа, направленный по оси (рис. 4.8). Вспомнив детство, написал список веществ, которые надо было купить в ближайшей аптеке. Когда посланный студент вернулся с двумя пакетиками и склянкой, на глазах «изумленной публики» было синтезировано несколько граммов довольно мощного взрывчатого вещества. Это вещество детонировало даже от слабой искры, поэтому с помощью простейшего разрядника, сделанного из тонкой керамической трубочки, обрезка провода и куска фольги, можно было добиться именно того, что требовалось — точечного инициирования. Последней проблемой было изготовление шара из полученного порошка, но и ее решили: взрывчатку смочили бензином, в котором была растворена жевательная резинка. Через некоторое время бензин испарился и осталась клейкая взрывчатая масса, способная принимать любую форму.


Рис. 4.7

Верхний ряд: схема сборки для измерения скоростей дрейфа ионов в ударно-сжатом газе и осциллограмма тока через столб ударно сжатого газа; стрелкой показан ток зарядки, тогда как конденсатор, при ионизации газа и приобретении им проводимости, должен разряжаться. Внизу: взрывающаяся сборка.

Компетентных специалистов по электродинамике взрывных явлений не было не только в МВТУ, но и в НИИВТ, так что обсудить возникновение «обратного тока» во взрывной сборке было не с кем. Я стал искать соответствующих специалистов по публикациям и выбрал теоретиков И. Якубова и В. Воробьева, работавших в Институте высоких температур. Ими ошибка в расчетах концентрации носителей заряда была обнаружена и определена причина зарядки конденсатора: магнитогидродинамический (МГД) эффект. При начальной ионизации ток создавал радиальное магнитное поле, линии которого были направлены по правилу штопора (рис. 4.9). Чтобы определить действие ЭДС МГД эффекта, надо было «направить» эти линии поля вдоль пальцев в ладонь правой руки и тогда большой палец укажет искомое направление. ЭДС была направлена против движения штопора, т. е. против тока разряда.


Рис. 4.8

Взрыв детонатора (снимок сделан по прошествии 30 микросекунд после коммутации тока).

Собеседники расспросили друг друга и о других результатах. Выяснилось, что Якубов ранее написал статью о кластерах в плотных газах, интересовался процессами их образования. Услышав о кластерах в гелии-3, он позитивно отнесся к просьбе быть оппонентом на защите диссертации. Оба теоретика посоветовали выступить на семинаре по МГД — генераторам, пообещав, что будет присутствовать академик В. Фортов и что если данные опытов в МВТУ пригодятся для создания генераторов тока, то можно будет рассчитывать на положительный отзыв ИВТАН о диссертации. Это было предложение, от которого я «не смог отказаться».


Рис. 4.9

Направление ЭДС МГД-эффекта — векторного произведения тока и магнитной индукции — в сборке, схема которой приведена на рис. 4.7, можно определить по правилу «штопора в правой руке».

Фортов на семинаре не присутствовал. Во вступлении я сказал, что занимаюсь дрейфовыми исследованиями, и что взрывные опыты также были неудачной попыткой в этой области. Эти слова участники семинара через минуту забыли, начали обсуждать схему «МГД — генератора», задавать вопросы, ответы на которые я не мог дать, за меня на них отвечали другие, но все сошлись во мнении, что «генератор» никуда не годится: кпд — ниже всякой критики. Когда избиение закончилось, припомнив, что и сам иногда в аналогичном стиле указывал оппонентам на ошибки, я поблагодарил за критику, которую «весьма высоко оценил». В этих словах не было сарказма: я получил представление, что могло случиться при защите диссертации, если бы в ней были упомянуты результаты взрывных опытов.

Оглавление книги

Реклама

Генерация: 0.218. Запросов К БД/Cache: 3 / 1