5.11

Воспоминания о быстрых гармониках

…Теоретик М. Г. Целкачев рассматривал различные варианты работы СВМГ, в том числе и на емкостную нагрузку. При обсуждении этого варианта внимание привлекла зависимость тока от времени. Она была необычной — весьма далекой от синусоиды — и вспомнилось, с какими проблемами пришлось столкнуться в НИИАА при передаче сигнала по кабелю. Несущая частота (с которой происходила смена полярности тока) даже при минимальных значениях индуктивности ВМГ и емкости нагрузки едва превышала десяток мегагерц, что было недостаточно для эффективного излучения (соответствующая длина волны на два — три порядка превышала размеры устройства), но для «быстрых» гармоник это соотношение обещало быть более благоприятным. Для расчетов мощности излучения, как всегда, не хватало знаний о нескольких параметрах. Получить информацию о них можно было только в ходе приближающейся серии испытаний.

Летняя (1990 г.) серия испытаний на полигоне Кызбурун-3 отличалась от других тем, что впервые для измерения частотно-мощностного распределения (спектра) РЧЭМИ впервые использовались специально разработанные спектрометры (рис. 5.19). Они были предназначены для измерений только в узких «полосах» (пропускание было существенно лишь для РЧЭМИ с частотами, отличавшимися примерно на 5 % от «центральной»), а в остальных диапазонах, которые, по оценкам, охватывали три-четыре частотные декады (от десятков мегагагерц до десятков гигагерц), эффективные фильтры препятствовали приему. Значение мощности РЧЭМИ в пределах узкой «полосы» представляло одну точку — каплю в огромном частотном море. Нечего было и думать, чтобы получить таким образом весь спектр, потому что для этого потребовались бы тучи спектрометров, для закупки которых не хватило бы денег, выделяемых Минобороны на исследовательскую деятельность. Но была реальной другая возможность: получив несколько точек, восстановить по ним весь спектр, используя теоретическую модель. «Центральные» частоты спектрометров были сосредоточены в самом «важном» диапазоне: 2; 7,9; 12,1; 17,9 гигагерц, а информация выдавалась в виде треугольных импульсов, причем зарегистрированной мощности были пропорциональны как амплитуда импульса, так и его длительность. Скорость развертки осциллографа подбиралась такой, что, если слишком мощное излучение вызывало «зашкал» (выход сигнала за пределы экрана), то оставался шанс извлечь информацию из длительности импульса. Не лишены были спектрометры и недостатков: блоки были связаны с осциллографами радиочастотными кабелями и на них излучением наводились и накладывались на «треугольники» пресловутые «дребезги».

5.11    Воспоминания о быстрых гармониках
5.11    Воспоминания о быстрых гармониках

Рис. 5.19

Сверху — спектрометрические блоки, каждый из которых предназначен для измерения спектральной плотности РЧЭМИ в очень узком частотном диапазоне. Снизу — осциллограмма сигнала с такого блока.

Казалось бы, восстановить весь спектр можно и по одной точке, если теоретическая модель достаточно надежна, а спектрометр — точен. Эта иллюзия опровергалась в каждом опыте: для совершенно идентичных сборок показания спектрометров отличались иногда в разы, что никак нельзя было объяснить разбросом мощности генерируемого РЧЭМИ в пределах очень узкого диапазона измерений. Причина была другая: поскольку расстояние от точки подрыва до прибора было значительным, а полоса пропускания — узка, совершенно незаметный, неконтролируемый поворот сборки по сравнению с предшествовавшим опытом приводил к тому, что в антенну спектрометра «светили» другие лепестки: попадало излучение, характеризующееся отличной от предшествующей совокупностью частот и интенсивностей.

Дело в том, что для различных длин волн имеются благоприятные и неблагоприятные направления излучения. Если «завить» проводник в петлю (изготовить магнитный диполь), то, в зависимости от расположения на нем минимаксов токовой волны, вблизи будут наблюдаться и минимаксы магнитного поля и излучения. Число минимаксов будет зависеть от соотношения длин: проводника, из которого изготовлен диполь и токовой волны, причем, чем большее число минимаксов тока укладывается на длине диполя, тем больше число «лепестков» излучения.

Проиллюстрируем это простейшее качественное описание (рис. 5.20). Цифры под диаграммами — отношения размера петли-антенны к длине волны, а длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения. Но каждая из этих диаграммы приведена для случая одной токовой волны, а если этих волн несколько? Наложите друг на друга хотя бы четыре диаграммы рис. 5.20, длины волн для которых различаются в пределах всего-то одного порядка! А ведь даже в узком диапазоне измерений спектрометра регистрируется излучение мириадов гармоник. Отражение от земли еще более усложняет распределение.

Выход был один — набирать обширную статистику опытов. Нечего и говорить, что стоил этот процесс недешево.

5.11    Воспоминания о быстрых гармониках
5.11    Воспоминания о быстрых гармониках

Рис. 5.20

Сверху — зависимость пространственного распределения излучения простейшего диполя от его размера и длин излучаемых волн (цифры под диаграммами — отношения этих величин, длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения). Художники (особенно — американские) часто изображают поражение целей РЧЭМИ как удары молнией. Хотя, конечно, РЧЭМИ невидимо, да и пробоя воздуха всеми средствами стараются избежать, достоверность часто приносят в жертву зрелищности, как это сделала редакция журнала Aviation Week, в иллюстрации потока изотропного излучения, формируемого взрывным источником (снизу).

… Опыт готовят долго, но вот датчики и кабели подсоединены, и всех загнали в бункер. Кнопка нажата; на взрыв не смотрят, это опасно. Видна отраженная от стен вспышка. Через доли секунды воздух на мгновение становится тугим и бьет по ушам. Близкая детонация разгоняет соломинку так, что она втыкается в сталь.

Ударная волна сожмет самую прочную сталь, а следующая за ней волна разрежения «растащит» стальной цилиндр, превратив его в подобие полена, разваленного колуном (рис. 5.21), причем внутри «полена» сохранится структура, напоминающая древесные волокна. На дистанции около метра от взрыва поток газов до песчинки счищает почву с корня дерева (иногда этим пользуются, оставляя вблизи заряда «сувениры»; при инструктаже невредно напомнить, что так же чисто могут быть «обдуты» и мышцы с кисти руки). Наконец, гром взрыва умирает, сделав слышным шелест летящих осколков — остатков того, что еще несколькими мгновениями ранее было генератором, собранным вашими руками. Первый взгляд — на осциллографы: есть ли сигналы от датчиков тока, от спектрометров. Потом все бегут к мишеням…

…Внешность ЦУВИ, испытанных в этой серии, изменилась разительно — теперь это было компактные, полностью автономные, вполне подходящие по габаритам для боеприпасов устройства (рис. 5.22). Импульс тока «выжали» из ферромагнитного генератора (ФМГ) — при ударной демагнетизации пластин из электротехнического железа. ФМГ впервые был разработан во ВНИИЭФ и адаптирован для применения в ЦУВИ. Каждую пластину набора надо изолировать (чтобы поле «выходило» по изоляции в обмотку, а не растрачивало свою энергию на нагрев металла вихревыми токами), и, кроме того, образовать из сложенных пластин конус (чтобы труба одновременно ударила по всем ним), для чего используются клинья из бронзы. Сложный ФМГ работал не очень стабильно, но с одного кубического сантиметра набора пластин удалось получить до 0,5 Дж энергии токового импульса!

5.11    Воспоминания о быстрых гармониках

Рис. 5.21

Стальной цилиндр, «разваленный» волной сжатия и последовавшей разгрузкой.

Но оказалось, что плоды мучений с источниками запитки для ЦУВИ несъедобны, хотя собственно излучатель (Е-23) показал неплохие результаты при воздействии на мины и при его срабатывании была временно выведена из строя старая, а потому довольно стойкая РЛС П-12, располагавшаяся в полусотне метров от взрыва. Повторить эти достижения для укомплектованного СВМГ и ФМГ излучателя не удалось. Причин виделось две: случайная и не очень. Случайная была аналогичной той, которая вызывала разброс показаний спектрометра: неконтролируемые повороты сборки в разных опытах. Другую объясняли расчеты, наконец, завершенные группой Бармина: оптимум излучения характеризовался весьма «острой» зависимостью от начальных параметров, особенно — от индукции магнитного поля в РТ. Даже незначительное отклонение от номинальных значений генерируемого ФМГ тока или коэффициента усиления СВМГ вело к весьма существенным неблагоприятным изменениям в режиме излучения ЦУВИ. Разброс характеристик устройств энергообеспечения была неудовлетворительным: для ФМГ — до 30 % по току, а дня СВМГ (причем даже дня варианта, изготовленного во ВНИИЭФ, где культура производства неизмеримо выше, чем на всех серийных заводах) — около 10 % по коэффициенту усиления. И ФМГ и СВМГ нуждались в кропотливой «доводке», сопряженной с огромным расходом времени и средств…

5.11    Воспоминания о быстрых гармониках

Рис. 5.22

Слева — схема ферромагнитного генератора начального импульса тока. В ферромагнетиках во взаимодействии с внешнем полем основную роль играют собственные, не зависящие от орбитального движения, магнитные моменты электронов (спины), а атомы связаны в кристаллической решетке. Остаточная намагниченность ферромагнетиков не исчезает и при снятии внешнего поля.

Расширяемая взрывом ВВ 1 труба, прежде чем начать движение по виткам обмотки ВМГ, ударяет по набору 2 железных пластин, в котором системой постоянных магнитов 3 и магнитопроводов 4 создано поле с индукцией около 2 Тл. Удар трубы формирует в железе волну, которая разрушает его доменную структуру, превращая из ферромагнетика в парамагнетик. В парамагнетике реакция на внешнее магнитное поле обусловлена движением электронов на атомных орбитах. Оси моментов электронных токов вращаются (прецессируют) при приложении поля, а, кроме того, упорядочиванию их ориентации мешает тепловое движение атомов. По этим причинам существенное намагничивание невозможно и ранее заключенное в доменах поле освобождается. Оно вытесняется в обмотку 5, где наводит ЭДС, которая и создает начальный ток в ВМГ.

Справа — сборка Е-29 — полностью автономный прототип электромагнитного заряда, включающий ферромагнитный генератор для получения начального импульса тока, усилитель тока (ВМГ) и цилиндрический ударно-волновой излучатель. Рядом — элементы магнитопровода ФМГ.

Состоялся также дебют СВМГ с малоемкостным конденсатором в качестве нагрузки, получившего название взрывомагнитного генератора частоты (ВМГЧ).

.. Как мы знаем, магнитный поток «выпустить» непросто — надо разорвать контур тока, например, взрывающегося ВМГ — да еще успеть изолировать разрыв. Но можно создать изолированный разрыв заранее (рис. 5.23), включив в контур высоковольтный конденсатор: ведь между его пластинами — тот же разрыв. Ток в таком генераторе осциллирует, так как емкость контура существенна, и по мере уменьшения индуктивности частота колебаний возрастает (рис. 5.23,а). Иногда обмотку ВМГЧ делают из нескольких проводов, подсоединяя каждый к отдельному конденсатору: из-за рассогласования токов, излучение[112] рассеивается в этом случае более равномерно. Оценив период колебаний (для единиц микрогенри и нанофарад), получим сотни наносекунд, что не очень благоприятно (волны в сотни раз «длиннее» самого ВМГЧ). Но эти «несущие» волны — не основные в излучении: компрессия поля трубой, давая прибавку тока тем большую, чем выше его мгновенное значение, приводит к появлению «быстрых» гармоник. При каждой осцилляции тока меняется и состав этих гармоник, что естественно — ведь меняются и параметры контура. Так что излучает ВМГЧ не один импульс, а последовательность (цуг) — по числу полуволн тока.

Сделать модель ВМГЧ пригодной для численных расчетов можно, учитывая в ней (в виде эквивалентного сопротивления) интегральные потери на излучение. Причины других потерь — такие же, как и в СВМГ (диффузия магнитного поля, сопротивление изоляции проводов), поэтому их можно определить из осциллограмм тока, который генерируется СВМГ с точно такой же, как и ВМГЧ, обмоткой, но — с индуктивной нагрузкой, и, следовательно, не излучающим (рис. 5.23,6). Из осциллограмм же, полученных при работе ВМГЧ, которые все стали называть «рыбами» (рис. 5.23,а), определили суммарное сопротивление потерь, как излучательных, так и обусловленных иными причинами. Оставалось только найти разность этих величин в каждый из моментов работы ВМГЧ, чтобы получить все данные, необходимые дня спектральных вычислений (графики справа). Нельзя назвать такой метод безупречным, но это было лучше, чем ничего.

5.11    Воспоминания о быстрых гармониках
5.11    Воспоминания о быстрых гармониках

Рис. 5.23

Вверху — схема взрывомагнитного генератора частоты (ВМГЧ).

1 — медная труба;

2 — взрывчатое вещество;

3 — обмотка;

4 — высоковольтный конденсатор;

Ниже — осциллограммы: а — производной тока ВМГЧ («рыба» — на жаргоне разработчиков электромагнитных боеприпасов); б — производной тока в спирали с обмоточными данными, точно соответствующими ВМГЧ, но с индуктивной нагрузкой вместо малоемкостной; в — полуволн производной тока ВМГЧ, снятая на значительно более быстрой развертке, чем осциллограмма «а». Закон усиления тока в спирали, замыкаемой трубой, известен из трудов А. Сахарова. На осциллограмме «в» видно, что форма полуволн ломаная, несинусоидальная, а значит, в разложении существенна доля быстрых гармоник. Делают форму колебаний такой бешеные «впрыскивания» тока при сжатии создаваемого им поля (обе эти величины жестко связаны). Луч осциллографа слишком медлителен, чтобы воспроизвести скачки тока, достоверна лишь огибающая — линия, соединяющая токовые амплитуды. Она служит для их нормировки, когда ломаную кривую тока представляют как сумму уже «чистых» синусоид (гармоник). Остальное понятно: для каждой гармоники тока известной частоты и амплитуды вычисляют мощность излучения через спиральную антенну — витки обмотки, в данный момент еще не закороченные ударом трубы. Доля гармоник с частотами от сотен до десятков тысяч мегагерц (много большими частоты «несущей» волны) к концу работы существенно возрастает (красный график справа), растут и потери на излучение, «подсаживая» ток.

Пиковая мощность излучения ВМГЧ меньше, чем у ЦУВИ, но время генерации (десятки микросекунд) на четыре порядка больше и энергия РЧЭМИ даже выше.

Похожие книги из библиотеки

Линейные корабли типа "Нагато". 1911-1945 гг.

В книге освящена история проектирования, строительства и боевой службы японских линейных кораблей типа «Нагато», считавшихся в 1920-30-х гг. самыми сильными в мире.

Детально описываются морские операции и сражения второй мировой войны, в которых участвовали эти корабли.

Для широкого круга читателей, интересующихся военной историей.

Hawker Hurricane. Часть 2

Продолжение выпуска № 73. «Харрикейн» в иностранных армиях

Прим. OCR: К сожалению не найден оригинал издания. В имеющемся первоисточнике все иллюстрации собраны после текста.

Полуторатонные грузовики Германии 1939—1945 гг.

Какие принципы были положены в программу автомобилизации немецкой армии?

Во-первых, унификация. Считалось, что наличие в армии более сотни марок и моделей автомобилей чрезвычайно затрудняет работу германских авторемонтников и снабженцев. Впрочем, у англичан или французов типов машин было не меньше, чем у немцев. Несмотря на разнообразие типов, в Германии сумели унифицировать свой автопарк. Например, трёхосные Mercedes-Benz G3a, Bussing-NAG G31 и Magirus-Deutz М206 — автомобили разные. Но они имели больше половины взаимозаменяемых частей.

Во-вторых, немцы ввели четкое деление автопарка по грузоподъёмности. Производители коммерческих автомобилей теперь собирали их с привязкой к ряду — 1500, 3000, 4500 и 6000 кг. Те, что не соответствовали этим характеристикам, не имели перспектив в военных заказах.

В-третьих, принятая классификация машин по назначению вела к появлению унифицированных кузовов и определяла, какие их типы требуются в том или ином войсковом соединении. Была создана классификация Kfz по «Техническим условиям на автотехнику и мотооборудование» (Anhaltswerte uber Kraftfahrzeuge und Gerat D 600) от 10 апреля 1940 года и по «Распоряжению относительно транспортёров Вермахта, часть 5» (Wehrmaht Тruppen-Transportvorschrift Heft 5, HDv.68/5).

Приложение к журналу «МОДЕЛИСТ-КОНСТРУКТОР»

Бронеколлекция 2003 № 01 (46) Амфибии Красной Армии

5 февраля 1932 года советская внешнеторговая фирма АРКОС (Arcos Ltd. — All Russian Cooperative Society Limited) заказала фирме Vickers восемь плавающих танков. Первая машина была поставлена 21 июня, а последняя — 22 октября того же года.

После поступления первых закупленных танков, их испытаний и всестороннего изучения началось интенсивное проектирование отечественных образцов. При этом никакой лицензии не приобреталось.

Приложение к журналу «МОДЕЛИСТ-КОНСТРУКТОР»