2.4

Ядерный реактор торпеды: запустить быстрее!

День защиты дипломной работы приближался. В ней не упоминалось о датчике приземного срабатывания: тогда надо было описывать и все подробности его применения, с приведением данных о мощности боевых блоков, защищенности шахт и многом другом. Эти сведения относились к высшей категории секретности и было бы нелегко объяснить, почему такие данные доверили студенту. Описать решили менее секретное применение генератора: для быстрого запуска торпедного ядерного реактора (его разрабатывали в другом институте).

В такой ситуации необходимо избежать «теплового эксцесса», подобного опыту доктора Слотина и значительную роль играют запаздывающие нейтроны.

…В ядерном реакторе — таком, например, какой обеспечивает энергией огромный корабль (рис. 2.22), — тепловыделение регулируют, вдвигая или выдвигая из активной зоны (той же сборки с делящимся веществом) стержни, содержащие поглощающие нейтроны элементы (кадмий, бор). Но мгновенные нейтроны размножаются слишком быстро — настолько, что затруднительно контролировать рост мощности: скорость введения стержней в активную зону всего лишь на метр (примерно 10 % ее длины) должна быть порядка километров в секунду — немыслимая для механических устройств с их блоками и тросами величина. А при меньших скоростях введения стержней реактор развалится от перегрева. Так и случается при авариях, и все же существует интервал положений стержней, в котором реактор вполне управляем. В этом режиме прирост числа нейтронов (и мощности) происходит за счет запаздывающих нейтронов (мгновенные тоже, конечно, рождаются, но каждое их последующее поколение увеличивается только на количество, соответствующее размножению запаздывающих). Реактор «вынужден ждать», пока долгоживущие осколки выпустят свои нейтроны, и не «идет в разгон» а набирает мощность медленно (проценты в секунду) — так, что прирост ее можно в нужный момент остановить, даже при ручном управлении.

2.4 Ядерный реактор торпеды: запустить быстрее!
2.4 Ядерный реактор торпеды: запустить быстрее!
2.4 Ядерный реактор торпеды: запустить быстрее!
2.4 Ядерный реактор торпеды: запустить быстрее!

Рис. 2.22

Вверху — снимок макета ядерного реактора ВВЭР-1000. Активная зона состоит из стержней с обогащенным ураном и стержней с веществом, поглощающим нейтроны (последние служат для регулировки мощности). Стержни омываются водой, которая замедляет нейтроны и служит теплоносителем. Вода циркулирует в активной зоне под высоким давлением и нагреть ее без вскипания можно до значительно большей, чем сотня градусов, температуры, обеспечив тем самым эффективный теплоотвод. Очень горячая вода из активной зоны поступает в теплообменник, где отдает свою энергию и та преобразуется для дальнейшего потребления.

Уран в стержнях (называемых ТВЭЛами — тепловыделяющими элементами, показанными в центре) обогащен «двести тридцать пятым» изотопом на 5 или чуть более процентов, он значительно «беднее», чем оружейный. От реактора получают огромную энергию, но, кроме того, U238 из его топлива не идет «в отвал», а превращается нейтронами в другое делящееся вещество при протекании реакций:

U238+п ? U239 ? Np239 ? Ри239

Ядерные реакции, продуктом которых является Pu239, в основном заканчиваются через несколько недель после извлечения отработавших ТВЭЛов. Это время они выдерживаются в бассейнах с водой, а их гамма-излучение столь интенсивно, что возбуждает вторичное (черенковское) излучение синеватого цвета в водяной защите (ниже). В «отсветивших» ТВЭЛах остается плутоний, который отличается от урана валентностью, что делает возможным его выделение химическими методами.

Выделение энергии при ядерной реакции происходит за счет массы: суммарная масса продуктов реакций меньше, чем ядер, в реакцию вступающих. Офицеры и матросы авианосца «Энтерпрайз» (нижний снимок) выстроилась на полетной палубе, образовав формулу Эйнштейна, связывающую убыль массы («т») реагентов при делении уранового топлива и выделяющуюся при этом энергию («Е»), которой ядерные реакторы обеспечивают их корабль («с» — скорость света). Цифра «40» означает, что все сорок лет службы корабля доказывают справедливость этой формулы. Перезарядка активных зон ядерной энергетической установки авианосца производится раз в три года и обеспечивает дальность плавания более чем в 300000 миль. «Энтерпрайз» вошел в состав ВМС США в 1961 г. и останется в строю до 2013 г. Полное водоизмещение авианосца — 93400 т.

…Запустить хоть и миниатюрный, но лишенный защиты реактор внутри подводной лодки — означало гибель экипажа. Но выстрелянная из лодки торпеда не могла долго ждать, пока ее реактор наберет нужную мощность. Надо было сделать это как можно быстрее, но не потеряв управляемости реактора. Путь существенного повышения, пусть и «запаздывающей», сверхкритичности означал приближение к состоянию, когда и мгновенных[54] нейтронов станет достаточно для их размножения в сборке. «Пошедший в разгон» реактор взорвется не как ядерный заряд (там период возрастания несравнимо короче), а как перегретый паровой котел. Но даже если, произойдя в нескольких метрах от лодки, тепловой взрыв и не разрушит ее прочный корпус, нейтроны и гамма-кванты устроят «маленький Чернобыль» (конечно, тогда это слово еще не было известным всем символом). Этот путь отвергли, как опасный. Вариант «подкачки» нейтронов с помощью генератора в сборку с небольшой «запаздывающей» сверхкритичностью представлялся более разумным. «Освежив» свои знания в этой области, 23 февраля 1972 года (в День советской армии) я предстал перед государственной экзаменационной комиссией.

Похожие книги из библиотеки

Реактивный прорыв Сталина

Будучи единственной великой державой, пришедшей к концу Второй Мировой войны без собственной реактивной авиации, СССР недолго оставался в роли догоняющего. Несмотря на разруху и послевоенный кризис авиационного производства, советская оборонная промышленность смогла в кратчайшие сроки совершить настоящую реактивную революцию, не только ликвидировав отставание в гонке авиавооружений, но и выведя наши ВВС на передовые технические позиции.

Уже в 1947 году был начат серийный выпуск всемирно известного реактивного истребителя МиГ-15, который в ходе Корейской войны доказал, что как минимум не уступает новейшим американским разработкам, а кое в чем даже превосходит их. Этот успех был закреплен в последующие годы, когда в воздух поднялись такие поистине революционные в техническом отношении истребители, как МиГ-17, МиГ-19 и МиГ-21. Даже многие западные специалисты признают, что к концу 60-х годов СССР стал мировым лидером в области создания и серийного производства боевых самолетов.

Эта книга – подробный рассказ о великой авиационной эпохе, истории рождения и становления непобедимой реактивной авиации Советского Союза.

Борьба с танками

В книге на основе данных, опубликованных в иностранной печати, и по материалам открытой советской печати популярно излагаются основные положения по борьбе с танками и другими бронированными целями при ведении боевых действий в различных условиях.

В труде дается краткий анализ развития современного состояния и перспектив совершенствования танков и бронированной техники, исторический очерк развития борьбы с танками, характеристика современных средств, организации и способов ведения борьбы с танками.

Книга рассчитана на широкий круг военных читателей.

Легкий танк Т-26

Советская закупочная комиссия, возглавляемая И.А.Халепским — начальником недавно созданного Управления механизации и моторизации РККА, 28 мая 1930 года заключила контракт с английской фирмой «Виккерс» на производство для СССР 15 двухбашенных танков «Виккерс» 6-тонный. Первый танк был отгружен заказчику 22 октября 1930 года, а последний — 4 июля 1931-го. В сборке этих танков принимали участие и советские специалисты. В частности, в июле 1930 года на заводе «Виккерс» работал инженер Н.Шитиков. Каждая изготовленная в Англии боевая машина обошлась Советскому Союзу в 42 тыс.руб. (в ценах 1931 года). Для сравнения скажем, что сделанный в августе того же года «основной танк сопровождения» Т-19 стоил свыше 96 тыс.руб. Кроме того, танк В-26 (такое обозначение получили в СССР английские машины) был проще в изготовлении и эксплуатации, а также обладал лучшей подвижностью. Все эти обстоятельства и предопределили выбор УММ РККА. Работы по Т-19 были свернуты, а все силы брошены на освоение серийного производства В-26.

Приложение к журналу «МОДЕЛИСТ-КОНСТРУКТОР»

Боевые корабли Японии и Кореи. 612 – 1639 гг.

Настоящая работа посвящена боевым кораблям Кореи и Японии. Описываемый период ограничен эпохой Трех Царств в Корее и принятием эдикта о самоизоляции (сакоку) в Японии. С началом политики сакоку в Японии пришел конец строительству морского флота. Китайская династия Мин также упоминается в нашем тексте, поскольку Сиам (Таиланд) внес заметный вклад в историю японского флота.