Рентгеновские лазеры

Особую роль в планах «звездных войн» играет проект рентгеновского лазера с накачкой энергией от ядерного взрыва. Вообще идея рентгеновских и гамма-лазеров давно привлекает внимание ученых. Применение таких лазеров даст человечеству большие возможности: как источники когерентных волн они приведут к рождению рентгеновской или гамма-голографии (молекулярной голографии), позволят расшифровать объемную структуру молекул и атомов. Возможность воздействовать на атомы и их ядра строго дозированными порциями энергии — квантами — позволит изучать и направленным образом изменять структуру атомных ядер. Тщательно подобрав частоту излучения, можно раскачивать и разрывать определенные связи в ядре и осуществлять таким образом самые экзотические ядерные превращения. Ту роль, которую играют сейчас оптические лазеры в области управления химическими реакциями, рентгеновские и гамма-лазеры будут играть в сфере ядерных превращений. Впрочем, они найдут применение и в хирургии, и в спутниковой связи, и в других областях народного хозяйства. Поэтому уже более 20 лет продолжаются попытки создать рентгеновский лазер, используя, разумеется, не разрушительную энергию ядерного взрыва, а контролируемые источники (например, обычные оптические лазеры).

В 1984 г. в США был произведен эксперимент по генерации лазерного рентгеновского излучения в газовой среде с использованием в качестве источника накачки мощного двухлучевого оптического лазера «Наветт» (Ливерморская национальная лаборатория), каждый луч которого имел плотность мощности 5 1013 Вт/см2 в импульсе длительностью 4,5 • 10-10 с.

Схема рентгеновского лазера: 1. Следящий телескоп. 2. Кожух. 3. Наведение и двигательная установка. 4. Лазерные стержни. 5. Ядерная бомба.

Схема рентгеновского лазера: 1. Следящий телескоп. 2. Кожух. 3. Наведение и двигательная установка. 4. Лазерные стержни. 5. Ядерная бомба.

В фокусе лазера помещалась мишень — тончайшая пленка размером 0,1 х 1,1 см из селена или иттрия. Луч испарял мишень, создавая плазму из ионов этих металлов. Столкновения с электронами в плазме вызывали возбуждение ионов, которое приводило к вынужденному излучению на частотах около 200 ангстрем. Наличие лазерного эффекта подтверждалось тем, что излучение, скажем, селеновой плазмы по интенсивности превышало примерно в 700 раз ожидаемое ее спонтанное излучение. По сообщению специалистов Ливерморской группы, планируется дальнейшее продвижение в область жесткого рентгена: так, излучение неоноподобных ионов молибдена даст лазерный эффект на 100 ангстрем, а использование новых лазеров накачки позволит уменьшить длину волны излучения до 50 ангстрем.

В том же 1984 г. сотрудникам Принстонской лаборатории физики плазмы (США) с помощью мощного инфракрасного лазера на молекулах СО2 удалось получить лазерный эффект в углеродной плазме на волне 182 ангстрем. Их лазер накачки имел импульсную мощность порядка 10–20 гигаватт. Его пучок фокусировался в пятно диаметром 0,2–0,4 мм, что позволяло достигать плотности мощности 1013 Вт/см2. Руководитель Принстонской группы С. Сакьюэр также надеется продвинуться в область более коротких волн, используя литиеподобные ионы неона. Интересно, что в этих экспериментах впервые использовалось для увеличения коэффициента лазерного усиления рентгеновское зеркало, изготовленное Т. Барби в Стэнфордском университете (США). Это параболическое зеркало с радиусом кривизны 2 м состоит из чередующихся слоев молибдена толщиной 35 ангстрем и кремния толщиной 60 ангстрем. Хотя каждый молибденовый слой довольно слабо отражает рентгеновские лучи, но отраженные от последовательных слоев лучи вкладываются, интерферируют и усиливаются, так что полный коэффициент отражения такого многослойного зеркала составляет 70 %.

В 1986 г., полностью ионизировав в фокусе мощного лазера атомы фтора, исследователи получили лазерное излучение с длиной волны 80 ангстрем.

Результаты эксперимента, в ходе которого списанная ракета-носитель «Титан» была уничтожена лучом лазера

Результаты эксперимента, в ходе которого списанная ракета-носитель «Титан» была уничтожена лучом лазера

Дальнейшее существенное уменьшение длины волны (а оно необходимо для уменьшения расходимости пучка у боевого лазера) требует таких огромных плотностей энергии накачки, которые достигаются только при взрывах ядерных зарядов. Работы в этом направлении с целью создать боевой рентгеновский лазер ведутся в Ливерморской лаборатории под руководством «отца американской водородной бомбы» Эдуарда Теллера. Испытания проводятся во время подземных ядерных взрывов на полигоне в штате Невада. В 1981 г. было опубликовано неофициальное сообщение об измеренных во время эксперимента характеристиках лазерного излучения: длина волны 14 ангстрем, длительность импульса > 10-9 с, энергия в импульсе около 100 кДж. Детально конструкция лазера не описывалась, но известно, что его рабочим телом являются тонкие металлические стержни.

Для поражения межконтинентальной баллистической ракеты, т. е. для получения плотности энергии, скажем, 10 кДж/см2 на расстоянии 1000 км при расходимости луча 10-5, в импульсе такого лазера должна быть энергия около 1010 Дж. При внутреннем КПД рентгеновского лазера, составляющем по довольно оптимистичным оценкам 10 % и при расстоянии стержня (точнее было бы называть его струной) от ядерного заряда около 1 м мощность заряда должна быть примерно 1015 Дж, или 200 кт тротилового эквивалента. По другим расчетам, для обеспечения дальности поражения МБР на расстоянии 2000 км потребуется ядерный заряд мощностью 50 кт, а число стержней составит 1015. Не исключена также возможность создания некоего концентратора энергии взрыва на одной струне, используя эффект отражения рентгеновских лучей от кристаллов при косом падении.

По-видимому, принципиальных ограничений на создание рентгеновского лазера с ядерной накачкой нет. Он обещает стать очень компактным прибором (с вероятной массой около 1 т), доступным для вывода в космос одной ракетой, что сделает его малоуязвимым оружием.

Похожие книги из библиотеки

Junkers Ju 52

Транспортный самолет Ju-52/3m (drei Motoren, три мотора) стал вершиной развития серии цельнометаллических монопланов, над которыми профессор Гуго Юнкерс работал на фирме Flugzeug- und Motorenwerke A.G. с 1915 г.

Focke Wulf Fw 190D Ta 152

Дальнейшее развитие истребителей типа Fw 190 — высотные истребители.

Самолеты Р. Л. Бартини

Автор на основе архивных материалов и воспоминаний ветеранов знакомит читателей с необычными самолетами и экранопланами, спроектированными Робертом Бартини, приехавшим в СССР из Италии в 1923 г. и посвятившим жизнь развитию советской авиации.

Ла -5

Разработанный в КБ Лавочкина деревянный истребитель Ла-5 с двигателем воздушного охлаждения и радиальным расположением цилиндров сыграл заметную роль в противоборстве советской авиации с люфтваффе на Восточном фронте. Лучший ас союзников Иван Кожедуб все свои 62 победы одержал на самолетах конструкции Лавочкина. Свой первый боевой вылет Кожедуб совершил севернее Курска в период проведения немцами операции «Цитадель», одной из его последних побед стал сбитый 15 февраля 1945 г. реактивный Ме-262. Большинство советских асов летало на самолетах с маркой Ла. Вместе с оснащенными моторами водяного охлаждения истребителями Як самолеты Ла были основной силой истребительных авиационных полков Красной Армии в период Великой Отечественной войны. До ноября 1944 г. было изготовлено 9920 самолетов Ла-5, с ноября 1944 г. начался выпуск более совершенных Ла-7. До прекращения производства в декабре 1945 г. было изготовлено 5905 истребителей Ла-7.

Прим.: Полный комплект иллюстраций, расположенных как в печатном издании, подписи к иллюстрациям текстом.