Глав: 8 | Статей: 86
Оглавление
«Железный занавес» между Востоком и Западом рухнул, но темпы развития военной техники в результате этого не только не заменились, но даже ускорились. Каким будет оружие завтрашнего дня? Ответ на этот вопрос читатель найдет в предлагаемой книге, где собраны сведения о самых интересных образцах экспериментальной военной техники и о проектах, реализация которых предстоит в следующем столетии. Со многими фактами российский читатель сможет познакомиться впервые!

Система поиска целей и управления огнем

Система поиска целей и управления огнем

В задачи средств поиска и управления входит следующее:

— держать под постоянным контролем всю территорию потенциального противника, акваторию Мирового океана и околоземное космическое пространство;

— обнаруживать, распознавать и следить за всеми потенциально опасными объектами (баллистическими и крылатыми ракетами, самолетами и спутниками и т. д., а после применения оружия оценить степень поражения цели;

— управлять системой ПРО, т. е. распределять имеющиеся боевые ресурсы по целям, следить за работоспособностью всех элементов системы и при необходимости вводить в действие резервные элементы, решать задачу степени опасности и необходимости применения оружия;

— точно наводить оружие на цели.

По мнению многих специалистов именно средства поиска и управления являются наиболее сложной, а значит, наименее надежной компонентой системы космической ПРО. Ведь эта система должна будет обеспечить борьбу с тысячами МБР, десятками тысяч боеголовок и сотнями тысяч ложных целей, которые необходимо сопровождать от точки их пуска до точки перехвата.

Близятся к завершению работы по созданию малогабаритного спутника наблюдения и целеуказания типа «Бриллиант Айз» («бриллиантовые глаза»), большое количество которых будет использоваться совместно с перехватчиками «Бриллиант Пеблз». Вывод в космос большого количества этих устройств позволит реализовать систему ПРО нелазерного типа.

Считается, что «глазами» космического оружия будут инфракрасные (ИК) мозаичные фотоприемники, содержащие до 20 млн. элементарных детекторов. Они имеют существенно лучшие характеристики, чем сканирующие ИК-приемники (типа телевизионных трубок): мозаичные приемники обладают коротким временем получения изображения (~100 мс) и высокой помехозащищенностью; информацию с них легко вводить в компьютер. Министерство обороны США запустило спутник «AFP-888» массой 2160 кг, главным компонентом которого является ИК-телескоп «Тил Руби» для обнаружения наземных военных целей (ракет, самолетов). Приемниками изображения в этом телескопе являются мозаичные ИК-датчики, охлаждаемые жидким неоном и метаном. Для обнаружения стартующих МБР нужны охлажденные до сверхнизких температур матрицы из теллурила ртути и кадмия. Для точного сопровождения цели матрица должна содержать по крайней мере 4000 х 4000 элементарных детекторов.

Большую трудность представляет обнаружение боеголовок после их разделения с носителем; ведь в отличие от ракеты боеголовка не имеет горячих частей. Для решения этой задачи необходимо создать длинноволновые ИК-приемники, способные обнаруживать объекты комнатной температуры, но на их работу большое влияние оказывает тепловой фон земной поверхности. Поэтому они могут успешно обнаруживать свою цель только на фоне космоса. Вследствие этого спутник обнаружения должен находиться на низкой орбите между поверхностью Земли и пролетающими над ним боеголовками, а его следящая аппаратура должна иметь большой угол обзора.

Сейчас разрабатываются новые широкоугольные оптические системы, имеющие конструкцию наподобие глаз у насекомых и некоторых ракообразных. Они состоят из большого количества стерженьковых линз, которые называются омматидиями, и создают неискаженное изображение большого поля зрения вплоть до полусферы. Это значительно упрощает компьютерную обработку изображения, захват и распознавание цели. Тем не менее задача обработки сигнала, поступающего с приемника изображения, весьма нетривиальна.

После того как цель обнаружена, встает задача ее распознавания и селекции (т. е. отделения ложных целей от истинных ракет и боеголовок). Системы селекции пассивного типа исследуют излучение самой цели, а активные системы воздействуют на цель потоками квантов или частиц и изучают результаты этого воздействия. Истинные боеголовки отличаются от ложных целей главным образом гораздо большей массой, а форма и свойства поверхности их могут быть почти неразличимы. Поэтому считается более надежным использовать для селекции целей не радиолокаторы и тепловые датчики, а пучки нейтральных частиц. Под воздействием такого пучка облучаемый объект испускает нейтроны и гамма-лучи пропорционально его массе. Надувную оболочку из пластика в форме боеголовки с металлическим покрытием радиолокатор не сможет отличить от истинной цели, а при облучении этой боеголовки пучком нейтральных частиц такая ошибка исключена. В ответ на это противник в принципе может дезориентировать средства распознавания целей, снабдив свои ложные цели устройством, которое при облучении пучком частиц испускает нейтроны. В 90-х годах ВВС США намерены провести летные испытания по селекции целей с помощью пучка частиц. На орбиту высотой около 300 км с помощью «шаттла» будет выведен в сложенном виде ускоритель длиной 35 м и массой 20 т, а также спутник-мишень и спутник с приборами, регистрирующими нейтроны и гамма-лучи. Ускоритель будет создавать пучок атомов водорода или дейтерия с энергией 50 МэВ и мощностью пучка до 2,5 МВт. Электропитание будет обеспечиваться кислородноводородными топливными элементами.

В огромной степени работоспособность всей системы ПРО зависит от надежности управляющих компьютеров. Но, как известно, память компьютера не обладает абсолютной надежностью: время от времени, случайным образом в ней возникают сбои. Обычно их источником являются быстрые альфа-частицы, испущенные ядром тяжелого атома при радиоактивном распаде и поражающие основу памяти компьютера — кремниевые кристаллы. Так как радиоактивные ядра в небольших количествах присутствуют почти во всех материалах, с проблемой надежности компьютерной памяти люди столкнулись уже на Земле. В околоземном пространстве вблизи или внутри радиационных поясов фон заряженных частиц значительно выше, чем у поверхности Земли, и вероятность возникновения сбоя памяти значительно возрастает.

После того как цель обнаружена, идентифицирована и принято решение об ее уничтожении, необходимо произвести прицеливание. Чем меньше диаметр пятна от луча лазера или пучка заряженных частиц, тем сложнее его навести на цель. Для большинства видов космического оружия в качестве прицела будут применяться настоящие телескопы с объективом диаметром порядка метра. Не исключено, что при наведении лазерного луча на цель будет использован эффект обращения волнового фронта. Для этого цель необходимо осветить маломощным лазером, а отраженный от нее свет, пройдя оптическую систему мощного боевого лазера, сам запустит поражающий импульс точно в том направлении, откуда он пришел, т. е. по направлению к цели.

Оглавление книги


Генерация: 0.143. Запросов К БД/Cache: 3 / 1