Главная / Библиотека / Оружие будущего:Тайны новейших военных разработок /
/ Глава 7 ФЛОТ / Направления развития других классов надводных кораблей

Глав: 8 | Статей: 86
Оглавление
«Железный занавес» между Востоком и Западом рухнул, но темпы развития военной техники в результате этого не только не заменились, но даже ускорились. Каким будет оружие завтрашнего дня? Ответ на этот вопрос читатель найдет в предлагаемой книге, где собраны сведения о самых интересных образцах экспериментальной военной техники и о проектах, реализация которых предстоит в следующем столетии. Со многими фактами российский читатель сможет познакомиться впервые!

Направления развития других классов надводных кораблей

Направления развития других классов надводных кораблей

Надводные корабли способны решать широкий круг задач. Они являются основными силами, обеспечивающими выход и развертывание подводных лодок в районы боевых действий и возвращение их в свои базы, перевозку и прикрытие морских десантов как на переходе морем, так и при их высадке на берег и в бою. В постановке минных заграждений, в борьбе с минной опасностью и в защите своих коммуникаций они также играют главную роль. Традиционной задачей для надводных кораблей по-прежнему является нанесение ударов по объектам противника на его территории и защита своего побережья с моря от военно-морских сил вероятного противника.

Основными оперативно-тактическими преимуществами надводных кораблей являются: универсальность решаемых боевых задач; способность вести одновременно наблюдение и слежение за противником в море, под водой и в воздухе, большие дальности плавания, высокие мореходные качества и скорости хода; возможность относительно быстрого развертывания и переразвертывания в процессе боевых действий; способность эффективно взаимодействовать с другими родами сил войск.

Боевые возможности и тактико-технические характеристики надводных кораблей непрерывно совершенствуются в ходе научно-технического прогресса. Водоизмещающие (т. е. частично погруженные в воду и держащиеся на ней благодаря силе Архимеда) корабли, несмотря на отсутствие больших перспектив дальнейшего улучшения их мореходности, повышения скорости, очевидно, займут доминирующее место среди надводных сил флота и в начале XXI столетия. Их развитие пойдет в основном путем постепенного совершенствования, главным образом за счет увеличения способности нести на себе корабельные самолеты, вертолеты и различные беспилотные средства. Число типов надводных кораблей, несущих на себе летательные аппараты, будет увеличиваться. Получат распространение и многовариантные корабли, благодаря чему их многотипность может быть сведена к нескольким базовым образцам.

Оснащение надводных кораблей ракетным оружием, создание более совершенных кораблей — носителей самолетов и вертолетов, а также переход ряда классов кораблей на атомные энергетические установки намного повысили боевые возможности надводных кораблей по сравнению с периодом второй мировой войны. Они превратились в глобальные морские силы общего назначения, эффективный резерв стратегических сил, ударную мощь флота в локальных войнах.

В долгосрочных планах военного кораблестроения США и стран НАТО наибольшее внимание уделяется развитию авианосцев и крейсеров с авиационным вооружением, кораблей охранения (крейсеров, эсминцев, фрегатов) и десантных кораблей.

Основу этих сил составляют авианосцы. В США сделан упор на создание огромных авианосцев класса «Нимитц». Эти корабли водоизмещением около 80 тыс. т, последний из которых планируется ввести в строй через 28 лет после первого — в 2003 г., являются для Штатов «скорой помощью», которую вызывают в места международных кризисов. Сейчас во флоте имеется 11 авианосцев, из них типа «Нимитц» — 9. После 2000 г. планируется начать производство еще 4-х.


Авианосец «Нимитц»: корабли этого типа будут строиться и в следующем веке

Дальнейшее развитие авианосцев предусматривает совершенствование самолетного парка, создание самолета с седловидным крылом, увеличение живучести с учетом требования выдерживать попадание 25 торпед или 40 ракет. В перспективе намечается строительство только атомных авианосцев, что даст возможность резко увеличить запасы топлива для самолетов.

Согласно доктрине ВМФ США, совершенствование ударных авианосцев не будет сопровождаться увеличением оружия самообороны. На новых кораблях оно предполагается немногочисленным — четыре 127-мм артиллерийские установки или два-три зенитных ракетных комплекса ближнего действия, как и на кораблях типа «Нимитц». Это объясняется тем, что авианосцы действуют совместно с кораблями охранения, к тому же увеличение оружия самообороны повлекло бы за собой ухудшение условий использования авиации.

В числе рассматриваемых в настоящее время Пентагоном имеется проект создания сверхбольшого авианосца, под кодовым наименованием STOAL. Этот гигант будет иметь водоизмещение в 214000 т и сможет нести на борту в два раза больше авиации, чем корабль класса «Нимитц». Авианосец будет построен по обычной схеме со сплошной палубой, маленькой «островной» надстройкой, четырьмя самолетоподъемниками и двумя катапультами.

Одновременно с проектированием и строительством больших ударных авианосцев в США и других странах НАТО ведутся исследования по созданию ударных авианосцев небольшого водоизмещения. Ими в 90-е годы предполагается заменить ударные авианосцы с котлотурбинными установками. Так, во Франции строится авианосец такого типа «Шарль де Голль». Этот корабль должен был вступить в строй в 1999 г., заменив собой другой авианосец — «Клемансо». Однако по последним сообщениям сроки ввода были пересмотрены, так как правительство Франции перекинуло часть средств с этого проекта на ускорение разработки перспективного истребителя «Рафаль».

В зарубежной печати имеются сообщения о создании многоцелевых авианосцев либо обычной конструкции, либо двухкорпусной (катамаранной) и трехкорпусной (тримаранной). Прогнозируется создание кораблей водоизмещением 45–55 тыс. т с ядерной или газотурбинной энергетической установкой. На их вооружении предполагается иметь до 60 самолетов, предназначенных для решения различных задач. Возможно также размещение на борту этих судов крылатых ракет.

Катамаранный авианосец может иметь площадь палубы на 20–40 % больше площади однокорпусного корабля такого же водоизмещения. Многие специалисты полагают также, что вследствие более высокой поперечной остойчивости двухкорпусная конструкция предпочтительнее и с точки зрения живучести в случае получения повреждений в подводной части. По инициативе министерства обороны Великобритании начата концептуальная разработка перспективного корабля противолодочной обороны, и в качестве одного из проектов предложена конструкция корпуса тримаранного типа длиной 160 м и водоизмещением 5800 т. Модельные испытания, проведенные гидродинамической лабораторией в г. Госпорт, показали, что тримаран может развивать большую по сравнению с однокорпусными моделями скорость при одинаковой мощности энергетической установки и имеет меньшую акустическую заметность. Несомненно, что создание такого корабля, которое планируется на 2010 г., даст толчок разработке авианосцев катамаранного типа.

Рассматриваются варианты создания мини-авианосцев водоизмещением около 15–20 тыс. т с крейсерской скоростью не менее 30 узлов. Такой авианосец сможет нести вертолеты и самолеты с вертикальными и укороченными взлетом и посадкой (VSTOL), а также палубные противолодочные самолеты обычного типа общим числом до 20–30 летательных аппаратов.

По мнению зарубежных военных специалистов, малые авианосцы и авианесущие крейсера в определенной степени будут способны заменить или хотя бы дополнить многоцелевые авианосцы при решении целого ряда боевых задач, что позволит им в перспективе стать основой противолодочных сил. Эти корабли совместно с многоцелевыми авианосцами способны решать и другие задачи, свойственные силам общего назначения. Ожидается, что создание большого числа малых и сравнительно дешевых авианосцев должно повысить боевую устойчивость авианосных корабельных группировок и расширить районы применения палубной авиации на океанских театрах военных действий.

В дополнение к авианосцам в странах НАТО предусматриваются приспособление возможно большего числа других кораблей и транспортных судов в качестве носителей вертолетов. Это расширит возможности надводных кораблей для поиска и уничтожения подводных лодок противника. Оснащение кораблей вертолетами придает им новые качества, значительно расширяет поле видимости несущего корабля, облегчает обнаружение и увеличивает надежность поражения подводных лодок противолодочным оружием. Обладая превосходством в возможностях обнаружения подводных лодок, вертолеты крайне затрудняют их действия по уклонению от противолодочных надводных кораблей. Вертолеты, используемые с надводных кораблей и транспортов, значительно облегчают решение задач по высадке десантов на побережье, преодолению проходов в заграждениях в воде и на берегу, а также повышают темпы высадки десантных отрядов. С помощью вертолетов создаются возможности для успешного решения задач разведки, целеуказания оружию, ретрансляции и связи, транспортировки и передачи различных грузов с корабля на корабль на ходу в море, спасания личного состава, траления минных полей и ряда других сложных задач, выполняемых надводными кораблями.

В США на вооружение поступило сравнительно большое количество переработанных эсминцев класса «Берк», на которых оборудованы вертолетные площадки. По оценкам западных экспертов, использование вертолетов позволяет увеличить зону обнаружения приближающихся крылатых ракет в два раза.

Для повышения эффективности поражения и уничтожения подводных лодок и надводных кораблей наблюдается тенденция создания для многоцелевых надводных кораблей специализированных самолетов, оснащенных поисково-ударными системами для борьбы с подводными лодками, ударными системами для поражения надводных кораблей и разведывательными системами для освещения обстановки. Создание таких самолетных комплексных систем значительно повысит боевые возможности надводных кораблей по обнаружению и поражению надводных и подводных целей.

Идет процесс внедрения атомной энергетики в надводное военное кораблестроение, где, как известно, она нашла свое применение в основном на американских авианосцах и ракетных крейсерах, но еще не получила столь широкого распространения, как в подводном флоте. Немаловажным сдерживающим фактором первоначально была более высокая стоимость постройки таких кораблей по сравнению с обычными. Однако следует учесть, что в общую стоимость постройки корабля с ядерной энергетикой включалась и стоимость ядерного горючего для обеспечения его плавания в течение 10–12 лет, в то время как затраты на строительство корабля с обычной энергетикой определялись, как правило, без стоимости расходуемого впоследствии топлива. Длительная эксплуатация кораблей с атомной энергетикой показала, что они значительно экономичнее. Уже сейчас для авианосца с обычной энергетикой стоимость израсходованного топлива, эквивалентного ядерному на авианосце «Нимитц», превышает 300 млн. долларов, т. е. она почти в три раза выше стоимости ядерного горючего. По данным командования ВМС США, стоимость строительства атомного авианосца и его эксплуатации дороже по сравнению с обычным на 12 %, в то время как эффективность выше на 20 %.

Одновременно изыскиваются возможности по созданию малогабаритных корабельных высокоэффективных автоматизированных энергетических установок на основе использования безгазового топлива. Возможно создание моделей и опытных образцов корабельных энергетических установок прямого преобразования различных видов энергии в электрическую: электрохимических и термоэлектрических генераторов, термоэмиссионных преобразователей, магнитогидродинамических установок и других.

Скорости надводных кораблей практически достигли своего предела: дальнейший их рост из-за сопротивления воды можно обеспечить только непомерно увеличив мощность силовых установок. Поэтому, как и у подводных лодок, разрабатываются способы повышения скорости за счет создания эффективных покрытий и структур поверхности корпуса для уменьшения коэффициента трения и турбулентного сопротивления воды.

Важной тенденцией развития надводных кораблей является усиление средств защиты их от оружия массового поражения. Зарубежные конструкторы пытаются сократить число и размеры надстроек и оборудования на верхней палубе, придать надстройкам и другим элементам надводной части корпуса обтекаемые формы, усилить их прочность, исключить иллюминаторы, создать различные системы и устройства, которые обеспечивали бы быстрое автоматическое задраивание отверстий на верхней палубе. Широко стала применяться герметизация основных помещений корабля и создаваться посты автоматического или дистанционного управления энергетическими остановками. Механизмы и оборудование устанавливают на амортизаторы для уменьшения воздействия ударной волны при ядерных взрывах.

Происходит постоянный поиск новых материалов, которые способны заменить сталь. Для палубных надстроек, корпусных конструкций и отделки внутренних помещений все шире применяются алюминиевые сплавы, пластмассы, стеклопластики и другие новые строительные материалы. Эти материалы позволяют значительно уменьшить вес корабельных конструкций, снизить способность их корпусов и надстроек отражать электромагнитные волны, а также удешевить постройку современных кораблей. Технология «стелс», которую обычно связывают с авиацией, находит свое применение и на флоте. Конечно, надводные корабли не могут достичь той степени скрытности для средств наблюдения противника, как более быстро движущиеся и меньшие по размерам самолеты «стелс», но те же методы могут дать и в этой области военной техники большой эффект. В 1985 г. был спущен на воду испытательный корабль «Си Шадоу», построенный по этой технологии. Его водоизмещение составляло 560 т, длина 50 м. Кроме исследования проблем снижения заметности надводных кораблей, это судно использовалось для тестирования множества других нововведений. Вся программа обошлась Пентагону в 190 млн. долл., в том числе стоимость корабля составила 50 млн. долл. «Си Шадоу» совершал экспериментальные плавания исключительно ночью. Первый его открытый показ состоялся только в апреле 1993 г., вскоре после чего корабль был списан. Результаты проведенных исследований были использованы при конструировании новых эсминцев класса «Орли Берк» и ряда транспортных судов.


Экспериментальный корабль «Си Шадоу»

Совершенствование ракетного вооружения кораблей ведется главным образом по пути его универсализации. В этих целях разрабатываются так называемые «корабельные системы ближней обороны» и многоцелевые системы средней дальности, вооружение которыми кораблей планируется начать в 90-х годах. Ведутся работы по созданию новых типов крылатых ракет с целью заменить существующие в период 1990–2000 гг. В новых разработках предполагается широкое распространение на надводных кораблях различного рода пусковых контейнеров. Кроме того, вырисовывается тенденция к дальнейшему усилению огневой мощи кораблей путем увеличения числа базируемых на их борту крылатых ракет. Запуск ракет нескольких типов планируется производить из одних и тех же установок вертикального пуска.

Непрерывно идет процесс повышения качества ракетной техники. Одновременно разрабатываются средства и методы защиты от этого оружия главным образом с помощью новых средств радиоэлектронной борьбы, зенитно-ракетного и артиллерийского оружия.

Развитие современных корабельных зенитных артиллерийских комплексов в настоящее время идет по пути полной автоматизации процессов стрельбы (включая обнаружение целей, наблюдение за ними, выработку исходных данных для стрельбы, выделение наиболее опасных из целей, наведение артиллерийских установок и управление огнем), повышения скорострельности, увеличения калибра и числа стволов, количества патронов в магазинах, дальнейшего совершенствования радиовзрывателей. Решение проблемы повышения эффективности стрельбы по низколетящим целям зарубежные специалисты видят в создании РЛС раннего обнаружения и автоматического сопровождения малоразмерных целей, сопряжении этих РЛС с артиллерийскими комплексами посредством АСУ, а также в разработке принципиально новых видов корабельной артиллерии и лазерного оружия.

В настоящее время в ВМС США разрабатывается 127-мм артустановка, в которой предусматривается возможность внедрения перспективных технологий и технических решений в ходе последующих модернизаций. Главным среди таких потенциальных усовершенствований считается применение электротермохимической пушки (ЭТХП), создаваемой на базе технологии CAP (Combustion Augmented Plasma — усиленное плазмой горение), которая является гибридом электротермической и жидкотопливной технологий. В такой пушке около 80 % дульной энергии образуется в результате сгорания двухкомпонентного жидкого метательного вещества и 20 % — за счет ионизированной плазмы, создаваемой мощным дуговым разрядом. По оценке специалистов министерства обороны США и фирмы-разработчицы, применение технологии САР может обеспечить двукратное увеличение эффективной дальности стрельбы, 50-процентное повышение начальной скорости и более высокую дульную энергию снарядов. Кроме того, путем регулирования скорости горения метательного вещества с помощью изменения частоты и мощности подводимых электрических импульсов создается возможность оптимизировать процесс выстрела таким образом, чтобы избежать больших значений максимального давления в канале ствола орудия и тем самым снизить величину перегрузок, действующих на снаряд, то есть получить «мягкий» выстрел при стрельбе гипероскоростным боеприпасом и «полку» давления, обеспечивающую сообщение снаряду большой энергии.

По мнению специалистов фирмы, с принятием на вооружение крейсеров и эскадренных миноносцев АУ с корабельной электротермохимической пушкой среднего калибра они получат возможность поражать морские и береговые цели на дистанциях, равных максимальной дальности стрельбы 406 мм трехорудийных башенных АУ линейного корабля типа «Айова».



Экспериментальная электротермическая пушка со снятым кожухом

В 1990 г. фирма «Фуд машинэри энд кемикл» по контракту, заключенному с ВМС США на сумму 4,6 млн. долларов, приступила к проектированию демонстрационного образца корабельной 60-мм одноорудийной зенитной АУ с ЭТХП на стандартном станке «Вулкан — Фаланкс», которая будет вести стрельбу гиперскоростным боеприпасом массой 3,5 кг с командной системой наведения. Для обеспечения гарантированного поражения цели корабельная система управления огнем сможет одновременно сопровождать выпущенные снаряды и атакующую корабль воздушную цель, а также осуществлять корректировку траектории снарядов. Работы по созданию данного образца завершились в 1994 г., после чего начались его стрельбовые испытания по маневрирующим целям с дозвуковой скоростью полета. При наличии положительных результатов может развернуться полномасштабная разработка зенитно-артиллерийских комплексов с ЭТХП.

К концу 80-х годов был достигнут большой прогресс в развитии противокорабельных управляемых ракет с различными головками самонаведения, что вызвало необходимость создания новой противоракетной обороны надводных кораблей. По мнению американских специалистов, для авиационно-ракетных ударов по надводным кораблям будет характерно массированное применение различных видов управляемого оружия в сочетании с активными средствами радиоэлектронного противодействия. Существующие сейчас системы ПРО и ПВО надводных кораблей, созданные базирующиеся в основном на использовании комплексов артиллерийского и зенитного ракетного оружия, уже не в полной мере способны справляться с защитой от нападения с воздуха. Дальность действия ЗРК, состоящих на вооружении американских кораблей, не превышает 120 км, скорость полета зенитных управляемых ракет (ЗУР) равна М = 3. Время полета ЗУР до дальней границы зоны поражения при этом достигает 2 мин. Для комплексов лазерного оружия время распространения поражающего излучения на максимальную для зенитных ракетных комплексов дальность составляет всего около 0,6 мс, а с учетом необходимости удержания лазерного луча на цели до ее поражения — 1–2 с (в будущем до 0,1 с).

Одним из достоинств лазерного оружия является практически неограниченное количество выстрелов. Однако на боевую эффективность лазерного оружия морского (наземного) базирования оказывает негативное влияние земная атмосфера, которая вносит существенные искажения при распространении в ней поражающего излучения, что требует применения специальных устройств для его коррекции.

В конце 80-х годов началось широкомасштабное математическое моделирование боевых действий на океанских ТВД с помощью лазеров различных типов. В этих целях используются специально созданные экспериментально-исследовательские комплексы, а также лабораторные стенды с оптическими компонентами для высокоэнергетических лазеров. Кроме того, широко применяются результаты моделирования, полученные в рамках программы СОИ, в частности методы обнаружения и сопровождения целей, наведения лазерного луча и управления им, а также алгоритмы, обеспечивающие переход от грубого сопровождения по факелу работающего двигателя ракеты к точному сопровождению ее корпуса, выбор наиболее уязвимой точки прицеливания и удержания на ней высокоэнергетического лазерного луча в течение требуемого для поражения времени, быстрое перенацеливание при борьбе с групповыми целями различных типов и оценка степени поражения каждой из них.


Экспериментальный газовый инфракрасный лазер MIRACL

В 1989 г. в лазерном испытательном центре Уайт-Сэндз проводились эксперименты с использованием полностью укомплектованной установки MIRACL по перехвату радиоуправляемых мишеней типа BQM-34, имитирующих полет противокорабельных ракет на дозвуковых скоростях. В дальнейшем осуществлялись перехваты сверхзвуковых ракет «Вандал», имитирующих ПКР, на малых высотах со скоростями до М=2. В ходе испытаний, проводимых в 1991 г., уточнялись критерии поражения ракет различных классов и самолетов, а в 1992–1993 гг. эти критерии проходили практическое подтверждение в процессе перехватов беспилотных летательных аппаратов, имитировавших применение противокорабельных ракет.

В конце 1993 г. началась широкомасштабная разработка конструкции боевой корабельной лазерной установки для проведения в морских условиях экспериментов по поражению реальных целей. Для этого американские специалисты сформулировали следующие требования: мощность выходного излучения несколько мегаватт в непрерывном режиме генерации; работа лазера не должна влиять на эффективность действия других корабельных систем и агрегатов; необходимо создать модульную конструкцию, чтобы оснащать лазерным оружием корабли различных классов, в частности крейсера типа «Тикондерога»; рабочий диапазон температур окружающего воздуха от —40 до +55 °C. при влажности 0—95 %. Основными элементами разрабатываемой установки являются собственно генератор излучения с оптическим резонатором, система формирования и наведения лазерного луча на цель, а также подсистемы хранения и подачи компонентов лазерного топлива и отвода отработанных реагентов.

Американские разработчики оценили возможность размещения высокоэнергетического химического лазера на корабле в строго определенном объеме, который, по их замыслу, не должен превышать соответствующих параметров 127-мм одноорудийной башенной артиллерийской установки Мк45 или ракетной установки вертикального пуска Мк41. Согласно расчетам, при запасе лазерного топлива на 100 с непрерывной работы (30–90 «выстрелов» в зависимости от дальности до цели) установка будет иметь массу на 15 % меньшую, чем АУ Мк45. Для уменьшения размеров сопловой блок генератора лазерного излучения имеет V-образную форму. Оптический резонатор конструктивно размещен на силовых элементах корпуса корабля, что обеспечивает требуемую жесткость крепления, необходимую для любых оптических систем.

По оценкам американских специалистов, подсистема управления лазерным лучом в установке MIRACL уже в настоящее время обеспечивает требуемые характеристики по компенсации дрожания луча вследствие вибрации корпуса корабля при работе его силовой установки и других обеспечивающих систем, узлов и агрегатов. Серийным вариантом системы формирования излучения будет SLBD, модифицированная с учетом требований по влагонепроницаемости компактности и массе.

Подсистему хранения компонентов лазерного топлива предполагается сделать комбинированной: в ее составе будут баллоны как высокого, так и низкого давления. Для хранения компонентов под высоким давлением должны использоваться баллоны цилиндрической формы из композиционных материалов, армированных стекловолокном. Их размеры выбираются с учетом размещения в стандартных контейнерах на установках вертикального пуска ракет. Такое техническое решение позволит использовать оборудование, предназначенное для погрузки на борт корабля ракет, для замены отработанных баллонов с компонентами лазерного топлива. В соответствии с требованиями министерства обороны, конструкция подсистемы должна обеспечивать высокую безопасность и живучесть в боевой обстановке. В частности, для защиты от воздействия снарядов крышки контейнеров бронируются, а сами контейнеры с баллонами высокого давления оборудуются газоотводными трактами для безопасного сброса давления в случае необходимости.

По оценке американских экспертов, двукратное увеличение «боезапаса» лазерного оружия (при времени поражения одной цели 2 с) требует повышения массы всей системы на 16 %, а занимаемого ею объема всего на 6 %. Согласно расчетам, потребляемая электрическая мощность для нормальной работы всех узлов и агрегатов комплекса корабельного лазерного оружия в дежурном режиме составляет 130 кВт, а в режиме боевого применения — 390 кВт, что вполне может быть обеспечено бортовыми генераторами электрического тока.

Интеграция комплекса в единую корабельную систему боевого управления будет осуществлена с помощью специальных интерфейсов и программ. Информация об обнаружении цели, наведении на нее высокоэнергетического лазерного луча и контроле поражения должна выводиться на единый корабельный пульт управления, с которого оператор при необходимости может корректировать работу комплекса. Частично эти вопросы были отработаны при проведении экспериментов в центре Уайт-Сэндз, с осуществлением передачи данных целеуказания полигонных РЛС на оптико-электронные средства подсистемы обнаружения, распознавания и сопровождения целей установки MIRACL.

Для решения всех вопросов по созданию корабельной системы лазерного оружия разработан план реализации программы до 2000 г. На первом этапе намечается создать экспериментальную корабельную установку с выходными энергетическими характеристиками, эквивалентными MIRACL, провести ее наземные испытания, а затем разместить на исследовательском корабле. Второй этап предусматривает проведение натурных экспериментов с целью изучения распространения высокоэнергетического лазерного излучения вблизи морской поверхности, а третий — испытания по перехвату дозвуковых и сверхзвуковых мишеней в условиях, близких к реальным боевым. После этого будет принято решение о начале полномасштабной разработки боевого корабельного комплекса лазерного оружия.

Кроме химических лазеров, за рубежом рассматриваются возможности использования в качестве корабельного оружия генераторов излучения других типов. Так, с середины 80-х годов в ВМС США разрабатывается система оружия на основе электроразрядного лазера с активной средой на СО2, работающего на двух длинах волн — 10,6 и 5,3 мкм (основная и в режиме удвоения частоты излучения) при мощности выходного излучения несколько сот киловатт. Такая система, являясь дополнением к существующим артиллерийским и зенитно-ракетным комплексам, может решать задачу защиты надводных кораблей от управляемых ракет, оснащенных инфракрасными головками самонаведения, на дальностях до 15 км.

Определенные технологические наработки в области создания электроразрядных лазеров с активной средой на СО2 имеют французские специалисты. В частности, по проекту LATEX, на осуществление которого было израсходовано более 300 млн. франков (общий объем ассигнований на разработку лазерного оружия в 1972–1990 годах превысил 700 млн.), была создана установка мощностью выходного излучения в непрерывном режиме 40 кВт на длине волны 10,6 мкм. В настоящее время состояние технологической базы позволяет приступить к созданию лазерной установки мощностью 200–300 кВт.

В качестве альтернативного варианта рассматриваются лазеры на свободных электронах, что объясняется прежде всего их значительными потенциальными преимуществами: возможностью перестройки по длине волны, высокой средней мощностью выходного излучения, относительно большими значениями КПД и т. д. Кроме того, достижения последних пяти лет в области ускорительной техники могут привести к широкомасштабным НИОКР по созданию лазеров на свободных электронах, работающих в ближней области инфракрасного диапазона (около 1 мкм) и имеющих массо-габаритные характеристики, оптимальные для мобильного базирования (в том числе корабельного).

В США головными разработчиками таких систем оружия являются фирма «Боинг» и Лос-Аламосская национальная лаборатория. Окончательный выбор высокоэнергетического генератора лазерного излучения может быть сделан по результатам практических экспериментов, проведение которых запланировано на 1997–2000 гг.

Противолодочное вооружение надводных кораблей предусматривается усиливать за счет совершенствования торпед, ракето-торпед, авиационных средств, а также оснащения их ядерными (нейтронными) боеголовками.

Для замены существующих, все более устаревающих торпед ведутся работы по созданию нового поколения этого оружия. Новые образцы торпед будут иметь гораздо большие скорость хода и глубину боевого применения и меньшую шумность, нежели существующие. Кроме того, их предполагается использовать как средство гидроакустического противодействия. Они будут иметь повышенную дальность обнаружения подводных лодок, имеющих покрытие из материала с пониженным коэффициентом отражения электромагнитных волн (такого, как ферромагнетики).

Ведутся разработки по созданию более эффективных энергетических установок для торпед. Например, в Великобритании разрабатывается новая энергетическая установка для тяжелых торпед в двух вариантах: с открытым циклом работы и замкнутым циклом. В первом варианте — для оснащения торпед второй половины 90-х годов. Новые установки обеспечат большие дальность плавания и скорость, а также меньшую шумность и, следовательно, более высокую чувствительность системы самонаведения.

В работах по созданию новых типов мин особое внимание уделяется разработке мин для борьбы с подводными лодками.

Ведутся исследования по созданию мин с неконтактными взрывателями, основанными на новых принципах действия, устойчивых к различным способам траления. Разрабатываются многозарядные противотральные устройства, предназначенные для защиты минных полей с якорными минами.

Особенно большое значение придается совершенствованию радиоэлектронного оборудования кораблей, и прежде всего гидроакустическиех и радиотехнических средств наблюдения и противодействия. Развитие гидроакустических средств идет по пути повышения их надежности, улучшения методов обработки отраженных от цели сигналов, снижения времени поиска, автоматизации процесса определения и выдачи параметров движения цели, уменьшения габаритов аппаратуры и совмещения антенн с обводами корпусов кораблей. В будущем экспертные системы смогут автоматически определять тип и даже серию замеченных радиолокатором судов. Широкое применение находят буксируемые гидролокационные станции.

В развитии корабельных радиоэлектронных средств происходит резкий качественный скачок, связанный с дальнейшей микроминиатюризацией радиоэлектронной аппаратуры (РЭА) в результате применения достижений функциональной электроники, составными частями которой являются: криоэлектроника, оптоэлектроника, акустоэлектроника, хемотроника, магнитоэлектроника.

Использование принципов, средств и методов функциональной электроники позволит существенно повысить тактико-технические и технико-экономические показатели радиоэлектронной аппаратуры и решить многие задачи, недостижимые при использовании традиционной элементной базы.

Одновременно большой прогресс достигнут в разработке высокоэффективного программного обеспечения для корабельных автоматизированных комплексов. Это должно позволить в будущем командованию корабля избавиться от рутинных действий и сосредоточиться на обработке информации самого высокого уровня.

Кроме этих общих тенденций, характерных для боевых надводных кораблей, наблюдается ряд специфических особенностей в перспективном развитии каждого из основных классов.

В настоящее время за рубежом ведутся проектные разработки новых специализированных кораблей огневой поддержки. При водоизмещении около 10 тыс. т и скорости 20–26 узлов они будут иметь на вооружении 3–4 орудийные палубно-башенные дальнобойные 203-мм установки и 2–4 универсальные артиллерийские установки, ЗРК самообороны и скорострельные 20-мм зенитные автоматы. Ожидается, что по своей огневой мощи такие корабли превзойдут существующие крейсера с 203-мм артиллерийскими установками.

Наиболее многочисленным отрядом надводных кораблей являются корабли охранения. В зарубежных странах к ним относят крейсера, эскадренные миноносцы (ЭМ) и фрегаты. Они являются многоцелевыми кораблями и предназначены для нарушения морских коммуникаций противника, ведения морского боя в составе соединений, защиты своих морских коммуникаций, обеспечения высадки морских десантов, постановки минных заграждений, решения задач ПЛ О, ПРО и ПВО, ведения разведки и др.

Наиболее мощным вооружением обладают крейсера. На смену прежним артиллерийского типа кораблям, находившимся в составе флотов более сотни лет, в 60-х годах XX века пришли принципиально новые крейсера с атомными энергетическими установками и многофункциональными корабельными комплексами.

В ВМС США первый из крейсеров новейшего типа — «Тикондерога» вступил в строй в 1983 г. Всего крейсеров этого типа намечается к постройке до конца XX века 26 единиц. В России, несмотря на продолжающийся экономический кризис, в 1996 г. спущен на воду крейсер «Петр Великий».

Перспективными планами намечаются дальнейшее совершенствование крейсеров, повышение огневой мощи зенитного противоракетного и противокорабельного оружия и универсализация вооружения и технических средств.


Концепция эсминца XX! столетия

Эскадренные миноносцы и фрегаты являются самыми многочисленными классами надводных кораблей. На них возлагаются задачи ПЛО и ПВО соединений кораблей, конвоев, десантных отрядов, а также огневая поддержка при высадке морских десантов или сухопутных войск на приморских направлениях, участие в блокадных действиях, несение дозорной службы у побережья, на подходах к своим базам, портам, проливам и узкостям. Действуют они, как правило, в составе поисково-ударных групп (ПУГ).

Главным отличием эскадренных миноносцев от фрегатов по американской классификации является их водоизмещение. Водоизмещение ЭМ находится в пределах 2500 (тип «Аянами», Япония) — 8500 т (тип «Кидд», США), водоизмещение фрегатов — в пределах 1200 (тип «Д'Эстьен Д'Орв», Франция) -4000 т (тип «Броудсворд», Великобритания).

Можно ожидать, что новые конструктивные особенности корабля типа «Берк» будут использованы при проектировании и строительстве других кораблей охранения — крейсеров и фрегатов по планам кораблестроения ВМС США до 2000 г. Япония также взяла этот эсминец в качестве образца при проектировании своего собственного корабля того же класса.

В развитии кораблей охранения наблюдаются унификация корпусов, вооружения и технических средств, повышение их тактико-технических данных, надежности и живучести. Ведется дальнейший поиск более устойчивых средств коллективной и индивидуальной защиты от оружия массового поражения.

Десантные корабли предназначены для транспортировки войск, техники и различных грузов морем и высадки (выгрузки) их на побережье противника при проведении морских десантных операций.

Десантные корабли входят в состав амфибийных сил, развитию которых командование США и флотов других стран — членов НАТО уделяет значительное внимание.

Возросшие требования, предъявляемые в современных условиях, к срокам погрузки, перехода и выгрузки десанта на необорудованное побережье, а также стремление максимально сохранить сбалансированность десантных сил при неизбежных потерях определили направления дальнейшего развития десантных кораблей. Этими требованиями во флотах зарубежных стран и обуславливается тенденция перехода от многотипности узкоспециализированных десантных кораблей к строительству крупных универсальных десантных кораблей.

По взглядам зарубежных специалистов, в разработке новых проектов десантных кораблей и судов наметились две противоположные тенденции: с одной стороны, максимально используются проекты корпусов, энергетических установок и вооружения ранее построенного корабельного состава амфибийных сил; с другой стороны, разрабатываются принципиально новые проекты кораблей, на которых останется лишь некоторое оборудование, предусмотренное ранними проектами. Сократить сроки погрузочно-разгрузочных работ на кораблях планируется за счет максимальной механизации автоматизации этих работ, разработки и постройки новых, более эффективных десантно-высадочных средств и широкого внедрения боевых и грузовых вертолетов.

Боевые катера — это ракетные, артиллерийские, торпедные и сторожевые корабли небольшого водоизмещения, задача которых вести боевые действия в прибрежных, шхерных и других стесненных для плавания районах против надводных кораблей и защищать свое побережье с моря.

Важнейшими тенденциями их развития являются: рост водоизмещения до 500 т, оснащение газотурбинными двигательными установками; постройка катеров с динамическими принципами поддержания; улучшение мореходности и дальности плавания водоизмещающих катеров, широкое применение в корпусах и надстройках легких алюминиевых сплавов и стеклопластиков, кроме того, катера вооружаются управляемым ракетным оружием, универсальными 76-мм артиллерийскими установками, торпедными аппаратами для стрельбы телеуправляемыми торпедами, повышается скорострельность зенитных автоматов.

Многие страны стали в последнее время обращать гораздо большее внимание на развитие боевых катеров из-за того, что за последнее десятилетие резко повысилась стоимость постройки боевых кораблей среднего и большого водоизмещения. Оценка ракетных катеров по критерию эффективность/стоимость показывает, что современные и перспективные ракетные катера имеют преимущества даже перед эскадренными миноносцами при действиях в прибрежных водах, а многие морские страны вести боевых действий вдали от своего побережья и не планируют.

Важную роль в развитии боевых катеров сыграл прогресс в области микроминиатюризации электронной аппаратуры и в области материаловедения. Это дало возможность разместить более совершенные комплексы целеуказания и управления огнем в малых габаритах катера и снизить массу самих ракет и корпусных конструкций.

В основу катеростроения зарубежных стран заложены базовые модели английских, норвежских и западногерманских фирм. В США и Японии боевые катера не строят, но проводят НИР и ОКР по исследованию их конструктивных и боевых качеств.

Зарубежные специалисты считают, что боевые катера и в перспективе следует рассматривать в качестве важного составного элемента ВМС НАТО, особенно в таких районах, как Балтийское море и его проливные зоны, Северное, Норвежское и отчасти Средиземное море.

По мере научно-технического прогресса боевые катера будут оснащаться более современными навигационными средствами, радиоэлектронной техникой, универсальным автоматическим и самонаводящимся оружием. Эти качественные изменения наряду с улучшением мореходности и дальности плавания будут способствовать дальнейшему повышению боевой устойчивости катеров при ведении боевых действий на закрытых морских театрах, в шхерных зонах и прибрежных районах.

В мирное время есть постоянная необходимость в патрульных катерах для защиты от морских пиратов, которые не только не исчезли, но и взяли на вооружение самые последние новинки техники. Растущее число судостроительных верфей предлагают скоростные патрульные катера, сконструированные на основе океанских гоночных катеров, которые приводятся в движение газовой турбиной. Такие суда оснащены современным автоматическим оружием и системами, позволяющими обнаружить мелкие суда типа лодок на расстоянии до 10 км.

Противоминные корабли предназначены для траления мин в своих водах и районах высадки десантов, а также противоминной обороны боевых кораблей и судов в море. В составе флотов в настоящее время находятся морские, базовые, рейдовые тральщики, катера-тральщики.

Современные морские, базовые и рейдовые тральщики имеют гидролокационные и телевизионные средства для поиска и классификации обнаруженных мин, тралы различного назначения, заряды для подрыва мин. Характерной тенденцией развития этого класса кораблей является создание немагнитных тральщиков, способных обнаруживать и уничтожать мины с неконтактными взрывателями. Создаются средства для дистанционного уничтожения мин, обнаруженных впереди по курсу корабля, совершенствуются корабельные гидролокационные станции, разрабатываются более совершенные подводные телевизионные камеры и другие средства для поиска мин.

Надводные корабли в современных условиях продолжают оставаться важнейшей частью флота. Развитие ракетного и других видов оружия придало этому роду сил принципиально новые качества, расширило его боевые возможности.

По всей видимости, к XXI веку роль и значение военно-морских флотов передовых морских держав не только сохранятся, но в современных политических условиях могут даже возрасти. Возможность военного флота плавать по всей акватории Мирового океана позволяет морским державам принимать активное участие даже в удаленных от их территории конфликтах. Одновременно научно-технический прогресс в этой области может значительно улучшить боевые характеристики современных кораблей.

----

Оглавление книги

Реклама

Генерация: 0.373. Запросов К БД/Cache: 0 / 0