Германский способ производства[12]

Приготовление этилена. Газ получался при пропускании паров спирта над окисью алюминия, при температуре от 380–400 °C. Подробности конструкции одной из печей даны на рисунках 32 и 33. Печи были очень малы, и их нужно было около 60 штук, чтобы доставить требуемое количество газа. Трубы, содержавшие катализатор, были сделаны из меди и нагревались в ванне из расплавленного азотнокислого калия. Было известно, что катализатор приготовлялся по способу Ипатьева и выдерживал от 10 до 20 дней. Полученный газ промывался обычным образом в скрубберах. Судя по сообщениям, этилена получалось около 90 % теоретического выхода.

Приготовление хлоргидрина гликоля. Реакция производилась в горизонтальном цилиндрическом котле, который был снабжен мешалкой и покрыт пробковой изоляцией во избежание нагревания внутренности котла от окружающего воздуха. В котел вводилось определенное количество хлорной извести, достаточное для получения 500 килогр. хлора, и 5 куб. метров воды. Сначала в смесь пропускали около 20 куб. метров углекислоты, потом этилен и, наконец, этилен и углекислоту одновременно. Отмечалась быстрота поглощения этилена и, когда реакция замедлялась, добавляли углекислоту. Никаких более подробных сведений по этому поводу не имеется, кроме того, что впуск газов был передан на усмотрение рабочего, наблюдающего за процессом. Реакция должна была идти при возможно низкой температуре, но имевшиеся на заводе аппаратов не давали возможности поддерживать ее ниже 5 °C. Температура во время хода производства колебалась в пределах от 5° — 10 °C. С целью поддержания ее на низком уровне, реагирующий раствор непрерывно перекачивался через змеевик, охлаждаемый холодной водой. Когда этилен более не поглощался, и в котле оставался избыток углекислоты, раствор испытывали на хлорноватистую кислоту. Для введения этилена требовалось от 2 до 3 часов.

Германский способ производства[12]

Рис. 32.

Получение этилена на Баденской Содо-Анилиновой фабрике, 60 единиц

1. Предохранительный клапан.

2. Выход этилена.

3. Впуск охлаждающей воды.

4. Выход горячих газов.

5. Газовая труба.

6. Змеевик холодильника.

7 Этиленовая труба к скрубберу.

8. Впускная трубка.

9. Впускная трубка для паров спирта.

10. Трубка для пара.

11. Дымовая труба.

12. Выход охлажденного спирта.

13. Кирпич.

14. Выход охлаждающей воды.

15. Трубы контакта.

Германский способ производства[12]

Pис. 33.

Получение этилена на Баденской Содо-Анилиновой фабрике. 1 элемент.

1. Предохранительная труба.

2. Газовая труба.

3. Выход горячих газов.

4. Входные трубы для паров спирта.

5. Выход этилена.

6. Медный змеевик (12 оборотов).

7. KNO3.

8. Контакт.

9. Газ.

10. KNO3.

11. Змеевик вокруг внутренней трубы.

12. Змеевик с контактным веществом у основания.

Германский способ производства[12]

Рис. 34.

Котел для реакции хлоргидрина на Баденской Содо-Анилиновой фабрике. 16 единиц.

1. Впуск этилена.

2. Трубки.

3. Впускная трубка.

4. Контрольный сосуд.

5. Насос.

6. К змеевику и фильтру прессу.

7. Мешалки.

8. Свинцовый змеевик.

9. Впуск СО2.

10. Свинцовые трубки.

При фильтровании продукта реакции через пресс удаляли углекислый кальций. Полученный раствор содержал от 10 до 12 % хлоргидрина гликоля и, после перегонки его с водяным паром, количество хлоргидрина в дестилляте повышалось от 18 до 20 %. Выход хлоргидрина составлял от 60 до 80 % теоретического, считая на затраченный этилен.

Германский способ производства[12]

Рис. 35.

Производство горчичного газа в Ливеркузене.

Установка для хлорирования тио-ди-гликоля.

Приготовление ди-гидро-окси-этил-сульфида. Чтобы приготовить ди-гидро-окси-атил-сульфид, к 18 или 20 % раствору хлоргидрина гликоля прибавляли теоретическое количество сернистого натра в виде безводной соли или в кристаллах. После этого смесь нагревалась до 90 — 100 °C, затем перекачивалась в выпарительный чан, где вода удалялась нацело кипячением. Полученный тио-гликоль отфильтровывался от выделившейся соли и перегонялся под уменьшенным давлением. Выход составлял около 90 % теоретического, рассчитанного на хлоргидрин.

Приготовление ди-хлор-этил-сульфида. Тио-ди-гликоль подвозился по рельсовому пути к двум большим бакам, служившим его хранилищами, и отсюда перекачивался посредством вакуум-насоса прямо в реакционный сосуд. Каждый реакционный сосуд был помещен в отдельной камере, вентилируемой как сверху так и. снизу, и снабженной стеклянными окнами для наблюдения. Сосуды были сделаны из 1?-дюймового чугуна и выложены 10-м.м. свинцом; они имели вышину 2,5 м., диаметр 2,8 м. и были покрыты кожухом, позволявшим производить нагревание водой и паром и поддерживать реакцию при 50 °C. Газообразная соляная кислота, направляемся по главной трубе, пропускалась через серную кислоту, что давало возможность наблюдать за скоростью, и поступала затем в реакционный сосуд через 12 стеклянных трубок, каждая около 2 см. в диаметре. Скорость течения соляной кислоты поддерживалась в такой степени, чтобы произвести поглощение до максимума. Газы, выделяющиеся при реакции, выводились из сосуда по трубке в коллектор, проходили через скруббер, содержащий древесный уголь и воду, потом через сепаратор и, наконец, направлялись в вытяжную трубу. Эти выпускные газы высасывались посредством вентилятора, соединенного также с нижней частью камеры, в которой помещался реакционный сосуд, так что все газы должны были пройти через скруббер, прежде чем выйти в вытяжку. По окончании реакции масло удалялось посредством вакуум-насоса в чугунный промывной чан.

Слой водного раствора соляной кислоты из реакционных сосудов удаляли также посредством вакуума в глиняный приемник. Стеклянное окно в камере позволяло наблюдателю избегать перегонки масла с кислотой. Реакционный сосуд был снабжен термометрам как внутри, так и снаружи, у чехла. Для испытаний во время хода реакции, пробы вещества могли быть подведены насосом к гидрометру, находящемуся под стеклянным колпаком; окончательная проба должна была показывать 126° Тв. Другая порция могла быть втягиваема в пробирку, при чем становилось возможным следить за прохождением соляной кислоты. Поплавок, помещенный в стеклянную внешнюю трубку, соединенную с реакционным сосудом, служил для показания уровня жидкости. Реакционные, промывные и дестилляционные аппараты, служившие для производства горчичного газа на немецких заводах, были нормального типа и применялись уже. раньше при многих других операциях.

Промывная ванна представляла собой чугунный сосуд, выложенный свинцом, 2,5 м. в диаметре и 2 м. глубины, снабженный колпаком и мешалкой. Для введения воды и раствора соды служили свинцовые трубы; подобные же трубы были устроены для высасывания вакуум-насосами. Крышка, имевшая плоский верх, была снабжена стеклами для освещения и наблюдения, к которым, для предотвращения заболевания, был прикреплен маленький паровой змеевик. Промытое масло перекачивалось в дистилляционный куб, — чугунный сосуд, выложенный свинцом, 1,5 м. в диаметре и 2 м. глубины, снабженный нагревающими свинцовыми змеевиками и соединенный посредством спирального свинцового холодильника и приемника с вакуум-насосом. Вода отгонялась от масла при 62–70 мм. давления. Высушенное масло перекачивали в резервуар, весьма сходный по. форме с промывной ванной, в котором оно смешивалось на заводе с определенным количеством растворяющего вещества, обычно хлор-бензола или иногда четырех-хлористого, углерода. Относительное количество растворителя изменялось в зависимости от времени года, и инструкции по этому поводу доставлялись из Берлина. Готовая смесь передавалась в баки складов и в вагоны-цистерны.

Похожие книги из библиотеки

Стратегические операции люфтваффе. От Варшавы до Москвы. 1939-1941

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.

Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Правда и мифы о спецназе

Известный телеведущий Игорь Прокопенко в своей новой книге приоткрывает завесу таинственности, которой окутаны подразделения специального назначения вооруженных сил разных стран мира — тот самый спецназ, о фантастических возможностях которого ходит столько легенд. В книге разрушаются мифы и стереотипы, связанные с засекреченными способами ведения войны, и рассматривается история спецназа начиная с древнейших времен — Античности — и до наших дней, включая спецоперации в Чечне, Беслане и Сирии.

Как вывести из строя пусковую установку стратегической ядерной ракеты? Как удалось в считаные минуты захватить резиденцию афганского лидера Хафизуллы Амина на неприступной горе Тадж-Бек? Может ли боевой дельфин, прошедший подготовку в центре спецназа, уничтожить атомную подводную лодку? Чему служат люди, способные предотвратить и развязать глобальную войну?

Многие истории, приведенные в этой книге, удивят вас и шокируют. Эта информация позволит понять, каким образом люди превращаются в существ, обладающих невероятными возможностями!

Тяжелое штурмовое орудие «Фердинанд»

Созданный как штурмовое орудие, этот самоходный истребитель танков оказался наиболее известным и результативным среди всех танков и САУ времен Второй Мировой войны. Имя «Фердинанд» стало нарицательным. Так именовали практически все немецкие самоходно-артиллерийские установки и даже в некоторых официальных документах Советской Армии 1943-1949 гг. вы нередко встретите «75-мм «Фердинанд»; 105-мм «Фердинанд»; и даже ... «150-мм «Фердинанд». Fro боялись и уважали. Ому противопоставляли проекты новых танков и САУ (часто остававшихся, впрочем, незавершенными). Его подвеска и силовой агрегат изучались всеми заинтересованными сторонами.

Нс случайно вокруг истории создания этой уникальной САУ, се устройства и боевого применения «навернуто» сегодня столько легенд и домыслов, мирно кочующих из издания в издание, что рассказ о нем, основанный на отечественных и трофейных документах, вряд ли покажется лишним.