И как их все-таки узнают?

Только что мы познакомились с иностранными данными о методах радиолокационной маскировки. Если рассказ был убедительным (автор во всяком случае к этому стремился), то читатель может подумать, что наблюдать за целями с помощью радиолокатора — задача бесперспективная. Ведь среди помех, шумов и ложных целей заметить полезный сигнал, отраженный от истинной цели, очень трудно, а узнать по этому сигналу, с какой именно целью мы имеем дело, по-видимому, просто невозможно.

Но превратив читателя в пессимиста, автор все-таки берется доказать, что дело обстоит не так уж плохо. И действительно, станции-то работают и обнаруживают цели. Сейчас мы и расскажем, используя и здесь данные зарубежной печати, о методах опознавания целей.

Как вы можете узнать при встрече человека, которого никогда раньше не видели? Лучше всего, если у Вас есть его портрет, фотокарточка или хотя бы словесный портрет, который умеют составлять криминалисты. В таком словесном портрете перечисляются основные черты разыскиваемого человека, например форма носа, разрез и цвет глаз, овал лица и т. д.

И как их все-таки узнают?

Вот и цели можно узнавать по их портретам. Правда, это не живописней портрет и даже не фотокарточка. Для опознания цели нам нужен специфический «радиолокационный портрет». Создают его следующим образом. Берут какую-нибудь цель и везут на специальный полигон. Там ее закрепляют на подставке и поворачивают в разные стороны. В каждом положении цели включают радиолокационную станцию и записывают отраженный сигнал. А его величина сильно зависит от угла, под которым мы облучаем цель. Для некоторых углов отраженный сигнал велик, для других мал. Самый слабый отраженный сигнал получается при наблюдении «с носа», когда цель повернута к нам своим заостренным концом. А если цель развернуть так, что ее боковая поверхность будет перпендикулярна направлению наблюдения, то отраженный сигнал будет максимальным.

Нарисуем теперь прямоугольную систему координат и будем откладывать по горизонтальной оси угол поворота цели, а по вертикальной — величину отраженного сигнала. Получим волнообразную кривую, у которой будут и широкие плавные подъемы, и узкие выбросы, и глубокие провалы. Это диаграмма обратного отражения цели, или ее радиолокационный портрет. Можно использовать и другую систему координат — круговую или полярную. Тогда угол поворота нужно откладывать по дуге окружности, а величину отраженного сигнала по радиусу, соответствующему этому углу. при этом мы получим круговую диаграмму обратного отражения, которая будет иметь вид замкнутой кривой. Однако чередование максимумов и минимумов на ней, характерное именно для этой цели, сохранится. Такая круговая диаграмма напоминает цветок. Если цель гладкая, как например головная часть ракеты, то диаграмма имеет 3–4 больших лепестка и похожа на цветок мака. У сложных целей, таких как самолет или спутник, которые имеют много выступающих элементов, антенн, острых граней и углов, радиолокационный портрет скорее всего напоминает ромашку.

Итак, портрет готов. Точно так же можно снять портреты и других радиолокационных целей. Если цель очень велика или ее нельзя привезти на полигон, то портрет можно снять и по модели. Делают точную уменьшенную копию цели и исследуют ее на полигоне. Правда, при этом и длина волны радиолокатора должна быть уменьшена во столько же раз, во сколько мы уменьшили цель. Тогда портрет получается точно таким же, как если бы мы наблюдали саму цель.

Теперь собираем все портреты в альбом и пишем на обложке: «Каталог наблюдаемых объектов для N-ской радиолокационной станции, работающей на частоте F0». А нельзя ли использовать этот каталог для станций, работающих на других частотах? К сожалению, нет. Попробуем изменить частоту зондирующего сигнала и посмотрим, что получится. Для гладкой цели характер радиолокационного портрета при небольшом изменении частоты практически не меняется. Число максимумов остается тем же, разве что их амплитуда и расположение слегка изменяется. А вот для целей сложной конфигурации даже незначительное изменение частоты радиолокационного сигнала может резко изменить портрет. И число максимумов, и их взаимное расположение, и их величина— все станет другим. Так что для каждой частоты приходится составлять свои каталоги.

И как их все-таки узнают?

А как представляют себе специалисты использование такого каталога, когда им нужно опознать цель? Иностранные специалисты различают два случая.

Пусть цель не стабилизирована, то есть кувыркается со скоростью, скажем, 10 оборотов в минуту. Тогда, фиксируя величину отраженного сигнала, за минуту можно записать 10 полных радиолокационных портретов. На ленте с устройства для записи сигнала получается цепочка последовательно записанных портретов. Эксперты рекомендуют выбрать тот портрет, который получился лучше всего[21], и затем обратиться к каталогу.

Если один из имеющихся в каталоге портретов точно совпадает с сигналом, то значит именно эта цель попала в поле зрения радиолокационной станции. Но так бывает не всегда. Точнее говоря, почти всегда бывает не так. Реально снятый портрет чаще всего не совпадает в точности ни с одним из эталонных. По общему характеру он очень похож вот на этот, но на нем три лишних пичка. Эти пички имеются на другом эталонном портрете, но зато его главный максимум уполз влево. В печати описывается несколько критериев идентификации эталонных реальных портретов, но все они допускают наличие неопределенности. Выбирая самый похожий портрет, можно допустить ошибку. В наихудшем случае реально снятый портрет одинаково похож на два эталона сразу. Тут остается сказать, что цель больше всего похожа на эталонный № 14 и № 27, а какой именно объект наблюдается неизвестно. Специалисты по теории вероятности предлагают в таких случаях бросать монетку или игральную кость. Эти беспристрастные судьи и определяют, какая цель наблюдается. А если будет ошибка? Ничего не поделаешь, приходится смириться.

Почему же это происходит? Если не учитывать неполадки самой станции, то остаются две главные причины. Первая — уже знакомый нам шум. Это он может приписать к портрету лишние пички или срезать закономерный максимум. Методы борьбы с ним уже известны. Вторая причина такова. Траектория объекта относительно радиолокационной станции может быть расположена так, что реальный портрет снимается под другим ракурсом, чем эталонный. Это похоже на попытку узнать человека в профиль, имея только его фотографию в фас. Как считают зарубежные специалисты, с этой весьма сложной задачей может справиться только вычислительная машина, да и то только в том случае, если известны характер кувыркания и его форма. Тогда в ряде случаев можно получить портрет цели в нужной нам плоскости и произвести опознавание цели.

Значительно труднее опознать цель, если она стабилизирована. Представьте себе, что Вы попали в автомобильный салон или в павильон машиностроения на ВДНХ. Перед Вами на круглых подставках вращаются сверкающие свежим лаком новенькие автомобили. За один оборот подставки можно, не сходя с места, осмотреть интересующую Вас машину со всех сторон. Это аналог кувыркающейся цели. Ну а теперь встаньте на обочине шоссе и понаблюдайте за проходящими машинами. Приближающийся автомобиль Вы видите только спереди, удаляющийся — только сзади. Когда автомобиль проносится мимо, можно успеть увидеть одну боковую сторону. Вот это аналог стабилизированной цели.

Чтобы получить портрет такой цели, станция должна наблюдать за ней очень долгое время, да и в этом случае не всегда получается полный портрет. Проводить опознавание цели становится очень трудно. Полученный отрезок портрета может быть похож на различные участки разных эталонных портретов. Больше неопределенность, больше вероятность ошибки. Для исправления положения можно использовать данные, полученные со стороны. В одном из специальных иностранных журналов предлагается изучать траекторию цели, тогда можно отбросить эталонные портреты целей, имеющих другие траектории. Есть и другие вспомогательные методы. Но и при таких ухищрениях опознавание стабилизированных целей, по мнению зарубежных специалистов, менее надежно, чем опознавание кувыркающихся объектов. Это обстоятельство — еще один аргумент в пользу применения стабилизированных целей (головных частей ракеты и спутников).

Рассматривали иностранные специалисты и такую задачу. Полученный портрет абсолютно не похож ни на один из эталонных. Значит появилась новая цель, которая еще не попала в каталог. Занесем ее пока условно. Встретив эту цель в следующий раз, мы уже «узнаем» нашу знакомую «незнакомку». И правда, незнакомка, так как по существу мы о ней ничего не знаем, но даже простая регистрация пролета цели по той или иной траектории иногда может иметь большое значение. В космическое пространство несущественных объектов не запускают — дорогое удовольствие. Так что и такое опознавание приносит пользу.

Вот, в общих чертах мы и познакомились, как специалисты пытаются опознавать цели по отраженным от них радиолокационным сигналам. Конечно, рассказ получился не очень полный и подробный. Но в популярной книжке и не обязательно разбирать подробности, а основные идеи, подсказывающие пути решения этой сложной задачи, здесь приведены.

Похожие книги из библиотеки

Бронеколлекция 1997 № 01 (10) Бронеавтомобили «Остин»

Самыми же массовыми броневиками Русской армии стали «остины». За период с 1914 по 1919 год было изготовлено около 250 боевых машин трех английских и одной русской серий. Простые по конструкции и надежные в эксплуатации (по тому времени, разумеется), эти бронеавтомобили хорошо зарекомендовали себя на фронтах первой мировой, а затем и гражданской войны в России. Они использовались в различных климатических условиях от Белоруссии до Дальнего Востока и от Архангельска до Средней Азии и Кавказа, и повсюду с неизменным успехом. Лучшей модификацией «Остина» стали машины последней — русской серии, спроектированные инженерами Путиловского завода. По совокупности боевых и эксплуатационных качеств русский «Остин» можно смело назвать лучшим броневым автомобилем первой мировой войны.

КВ. «Клим Ворошилов» — танк прорыва

Тяжелый танк КВ («Клим Ворошилов») к началу Великой Отечественной войны был, безусловно, самым передовым по конструкции и самым мощным танком в мире. Он создавался специально для прорыва укрепленных линий обороны, имел очень сильное для своего времени вооружение, а его броню не могла пробить ни одна из противотанковых пушек Вермахта. Немецкие танки в поединке с КВ вообще не имели никаких шансов выйти победителем, что и заставило конструкторов рейха срочно приступить к проектированию «Тигра» и «Пантеры».

В Красной Армии танки семейства КВ (КВ-1, КВ-1С, КВ-2, КВ-8 и КВ-85) сражались на всех фронтах с первых дней войны и до 1944 года, когда им на смену пришли знаменитые ИС-2. Последние, кстати, представляли собой глубокую модернизацию все того же КВ. Впрочем, все тяжелые танки, появившиеся в разных странах в годы Второй мировой войны, так или иначе создавались с оглядкой на «Клима Ворошилова» — одного из самых удачных проектов в истории отечественного танкостроения.

Танковая мощь СССР часть I Увертюра

Полная история создания, совершенствования и боевого применения советского танка – с 1919 года, когда было принято решение о производстве первого из них, и до смерти Сталина. Первое издание 3-томной «Истории советского танка» Михаила Свирина стало настоящим событием в военно-исторической литературе, одним из главных бестселлеров жанра. Для нового, расширенного и исправленного и окончательного издания, фактически закрывающего тему, автор радикально переработал и дополнил свой труд эксклюзивными материалами и фотографиями из только что рассекреченных архивов.