3.3.2. Индикаторы фазового провода электропроводки

При подключении запорных устройств тайников к сети переменного тока или оборудования электрического освещения внутри тайников часто возникает необходимость в определении фазового провода. Это, в первую очередь, обусловлено тем, что некоторые из рассматриваемых в данной книге запорных устройств правильно работают только при соответствующем подключении к ним фазового и нулевого проводов сети переменного тока. Для определения фазового провода используются специальные приборы, называемые индикаторами фазы. Эти устройства позволят вам быстро и безошибочно произвести монтаж электропроводки и другого оборудования, необходимого при изготовлении тайника.

Индикатор на неоновой лампе

Индикаторы, используемые для индикации фазы и наличия высокого напряжения, известны уже довольно давно. Обычно в состав индикатора входят последовательно включенные щуп-жало отвертки, ограничитель тока (резистор R1 сопротивлением 0,47… 1 МОм с малой емкостью между подводящими электродами, например типа ВС-0,5; МЛТ-1,0; МЛТ-2,0), неоновая лампа HL1 и сенсорная площадка (рис. 3.24). При однополярном подключении отвертки к токонесущему фазовому проводнику и касании пальцем сенсорной площадки неоновая лампа засветится, сигнализируя о наличии высокого напряжения. Напряжение, которое можно контролировать подобным индикатором, составляет 90…380 В, реже — от 70 до 1000 В, при частоте тока 50 Гц.

Рис. 3.24.

Рис. 3.24.

Индикатор на неоновой лампе

Индикаторы на лавинных транзисторах

Долгое время считалось, что заменить неоновую лампу на другой элемент индикации невозможно. Действительно, емкостной ток, протекающий от источника переменного тока частотой 50 Гц и напряжением 100…400 В через цепь индикации и тело человека на «землю» при эквивалентной емкости тела человека около 300 пФ, составляет 10…740 мкА, что на два порядка ниже величины тока, необходимого для свечения светодиодов. Тем не менее, используя специальные схемные решения, для индикации фазы можно использовать светодиоды, пьезокерамические излучатели и другие индикаторы. Оцепим величину мощности, потребляемую неоновой лампой при ее непрерывном свечении. При напряжении на лампе 100 В и разрядном токе 10…40 мкА подводимая мощность составляет 1…4 мВт. Значение подводимой мощности оказывается достаточным, чтобы обеспечить свечение светодиодных индикаторов, однако, поскольку напрямую обеспечить необходимую величину тока невозможно, требуется использование своеобразных трансформаторов, позволяющих получить не непрерывное свечение индикатора, а импульсное, с сохранением значения подводимой мощности. Таким требованиям отвечают релаксационные генераторы импульсов, работающие по принципу накопления и кратковременного сброса энергии — периодический заряд конденсатора от слаботочного источника тока до напряжения пробоя порогового элемента и последующий разряд на низкоомную нагрузку (светодиод). Разрядный ток при этом достаточен для того, чтобы вызвать яркую вспышку светодиода. Таким образом, подобное устройство должно содержать накопительный конденсатор, имеющий малый ток утечки и рабочее напряжение, превышающее напряжение пробоя порогового элемента; пороговый элемент, отвечающий следующим требованиям: малые токи утечки при напряжении ниже пробивного и малое сопротивление при пробое. Таким требованиям отвечают лавинные транзисторы и их аналоги. На рис. 3.25 приведены схемы индикаторов фазы, выполненные на основе релаксационных генераторов на лавинных транзисторах типа К101КТ1 структуры n-р-n (либо К162КТ1 структуры р-n-р). Транзисторы должны быть включены инверсно.

Индикатор (рис. 3.25) содержит ограничитель тока, выпрямитель, выполненный по мостовой схеме, и собственно релаксационный генератор импульсов.

3.3.2. Индикаторы фазового провода электропроводки
3.3.2. Индикаторы фазового провода электропроводки
Рис. 3.25.

Рис. 3.25.

Индикаторы на лавинных транзисторах

Частота вспышек светодиода при напряжении сети 220 В близка к 3 Гц. При увеличении емкости бумажного или электролитического конденсатора (с малой утечкой) яркость вспышек повышается со снижением частоты вспышек. Минимальное напряжение, которое позволяет обнаружить подобный индикатор, составляет 45 В. Частота вспышек снижается при этом до 0,3 Гц. Для сравнения: индикаторы на неоновых лампах позволяют индицировать напряжений не ниже 65…90 В. Индикаторы используют альтернативные схемы выпрямителей с сохранением прочих свойств. В схемах продемонстрирована возможность подключения сенсорных площадок к другим элементам схемы.

Устройство может быть выполнено и на основе составного лавинного тиристора (рис. 3.26).

Рис. 3.26.

Рис. 3.26.

Индикатор на составном лавинном тиристоре

В схеме (рис. 3.27) генератор импульсов собран на аналоге лавинного транзистора с напряжением переключения (пробоя) 12 В. Для транзисторов микросборки К101КТ1 при инверсном включении это напряжение близко к 8 В.

Рис. 3.27.

Рис. 3.27.

Индикатор на аналоге лавинного транзистора

Индикатор (рис. 3.28) собран по мостовой RC-схеме с включением в диагональ моста порогового элемента — лавинного транзистора.

Рис. 3.28.

Рис. 3.28.

Индикатор на основе мостовой RC-схемы

Схема индикатора (рис. 3.29) также выполнена с RC-мостом, однако в ней использованы два транзистора n-р-n и р-n-р структуры: при зарядке конденсаторов С2 и СЗ до определенного значения происходит мгновенное переключение транзисторов из состояния «выключено» в состояние «включено». При этом конденсатор С1 разряжается через светодиод VD5 и процесс повторяется.

Рис. 3.29.

Рис. 3.29.

Индикатор на двух транзисторах.

Индикаторы фазы на КМОП-микросхемах

Для построения индикаторов фазы без использования внешних источников питания могут быть использованы и другие виды генераторов. Например, на рис. 3.30 показана схема индикатора фазы с использованием генераторов импульсов на КМОП-микросхемах. Генератор вырабатывает пилообразные импульсы, в связи с чем яркость свечения светодиода плавно нарастает и понижается.

Рис. 3.30.

Рис. 3.30.

Индикатор на микросхеме К176КТ1

Работает генератор следующим образом. Конденсатор С2 заряжается через резистор R2 до напряжения включения коммутаторов тока (элементы DA1.1 и DA1.2). При срабатывании коммутаторов ключевой элемент DA1.1 разряжает через cвtтодиод накопительный конденсатор C1, a DA1.2 разряжает конденсатор С2, после чего процесс повторяется.

Устройство, приведенное на рис. 3.31, выполнено на основе двух генераторов импульсов, первый из которых определяет длительность и частоту следования световых вспышек и звуковых посылок, второй — частоту звука. Поскольку в процессе зарядки конденсатора С2 устройство потребляет ток на несколько порядков меньший, чем в режиме индикации, оно фактически работаем по описанному ранее принципу «включено/выключено». В схемах для защиты микросхем от возможных перегрузок по напряжению использованы стабилитроны.

Рис. 3.31.

Рис. 3.31.

Индикатор на микросхеме К561ЛЕ5

В устройствах могут быть использованы светодиоды АЛ307, АЛЗЗ6 и другие индикаторы, которые желательно отобрать gо максимальному свечению при минимальном токе. Поскольку падение напряжения на элементах схем (исключая резистор R1) определяется напряжением пробоя порогового элемента (более 8 В), в схемах могут быть использованы низковольтные радиоэлементы (кремниевые диоды и транзисторы с малыми обратными токами n-р переходов), конденсаторы с малыми токами утечки.

Индикаторы позволяют проверять наличие напряжения на токонесущих элементах, превышающее 45…50 В (при частоте 50 Гц), в том числе индицировать различные наводки; позволяют оценивать качество заземления и возможность его использования; проверять наличие напряжения на трубах отопления и т. д. Устройства можно использовать и в цепях с повышенной частотой, например для индикации напряжения частотой 400 Гц, хотя следует учитывать, что емкостной ток через тело человека возрастает при этом пропорционально частоте тока. При необходимости чувствительность индикаторов легко «загрубить» включением высокоомных делителей напряжения, неинверсным включением лавинных транзисторов, подключением стабилитронов и их цепочек и другими методами.

Похожие книги из библиотеки

Потопленные

В книге описываются боевые действия японских подводных лодок в 1941–1945 гг.

Автор освещает такие вопросы, как применение сверхмалых подводных лодок и человекоторпед; использование специальных самолетов с подводных лодок; артиллерийский обстрел с лодок побережья США; снабжение гарнизонов на блокированных противником островах; переходы лодок из Японии в оккупированные немцами европейские порты Франции, и другие вопросы.

В приложениях к книге помещены таблицы, характеризующие состояние подводного флота Японии накануне войны, строительство лодок в ходе войны и потери.

Средний танк Panzer III

В номере даётся краткий обзор конструкции и модификаций танка Pz.III, а также рассказывается об опыте его боевого применения.

Самоходная артиллерия вермахта

Выдержите и руках справочное издание «Самоходная артиллерия вермахта», о котором столько говорили год назад Надеемся, что Вы уже просмотрели его и вам понравилось полиграфическое исполнение, а при более внимательном ознакомлении вы оцените и его содержание. Составляя предлагаемый справочник, автор постарался выполнить те пожелания, которые вы высказывали в своих письмах Так, например, в данном издании увеличено количество фотографий, среди которых уже нет мертвых памятников и уродств современных музеев. Все машины представлены преимущественно фотографиями времен войны и, по возможное ж, в боевой обстановке Для удобства восприятия исторические справки отделены от ТТХ, которые сведены в таблицы. Здесь вы также встретите информацию о фирмах - производителях немецких САУ и статистику их выпуска по годам, что ранее не освещалось в отечественной печати. Поскольку автор был ограничен в объеме - графические образы боевой техники приведены в масштабе 1:72. По этой же причине часть боевых машин оказалась «за кадром». 8 издание не вошли: САУ на автомобилях, полугусеничных, или гусеничных тягачах и бронетранспортерах; САУ на шасси трофейных танков, специальные артиллерийские транспортеры (Waffentrager), а также большое число фронтовых импровизаций. производимых в малых количествах силами армейских мастерских и т.д , которым мы посвятим отдельные издания.

Броня крепка: История советского танка 1919-1937

Современный танк является наиболее совершенным образцом сухопутной боевой техники. Это сгусток энергии, воплощение боевой мощи, могущества. Когда танки, развернутые в боевой порядок, устремляются в атаку, они несокрушимы, как божья кара… В одно и то же время танк красив и уродлив, пропорционален и аляповат, совершенен и уязвим. Будучи установленным на постамент, танк являет собой законченное изваяние, способное заворожить… Советские танки всегда были признаком могущества нашей страны. Большинство немецких солдат, воевавших на нашей земле в 1941-1945 гг., называли три веши, больше всего запомнившиеся им, – русские просторы, морозы и танки. Советские танки. Точнее – массы советских танков, которые, подобно несокрушимым монстрам, прокатились по Европе, все сметая на своем пути… Уникальная книга, которую вы держите в руках, откроет читателю историю создания советского танка с момента принятия решения о производстве первого из них в 1919 году и до конца 1937 года. Вы узнаете, какие машины составляли ударную мощь одной шестой части суши в боях с японскими милитаристами и в республиканской Испании. В книге использованы редкие материалы и фотографии из архивов России, гриф секретности с которых только-только снят.