Условия тренировок

Условия тренировок

Класс программированного обучения

Как уже отмечалось, в ходе подготовки у космонавтов последовательно и целенаправленно формируется концептуальная модель предстоящего полета. Однако мысленный образ и общий интеллектуальный багаж космонавта представляют только базу для осуществления его трудовой деятельности. В ее содержание входит гамма психологических процессов, таких, как активное восприятие, память, мышление, принятие решений, а затем двигательные операции, требующие не физических нагрузок, а точных и координированных движений.

Условия тренировок

Зал вычислительного комплекса тренажёрной системы

Отсюда очевидно, как важна роль условий, воссоздаваемых на тренажере, которые воздействуют на сенсорное поле космонавта. В идеальном случае они не должны отличаться от условий, сопровождающих космический полет на всех его этапах. Однако достижение такого соответствия, несмотря на последние достижения космического тренажеростроения, практически невозможно. Прежде всего, технически невозможно воссоздать все специфические факторы космического полета в одном тренажере. Поэтому для подготовки космонавтов в зависимости от программы полета, решаемых задач и их специализации, применяется серия специализированных и комплексных тренажеров транспортных кораблей и орбитальных станций, которые позволяют осуществлять всестороннюю профессиональную подготовку, несмотря на некоторые отличия наземных условий и полетных. Достигается это, прежде всего, проверенными практикой методическими приемами.

Обобщенная структурная схема современного космического тренажера независимо от его типа и назначения (рис. 8) содержит пять основных блоков: рабочее место космонавта (РМК), систему имитации визуальной обстановки (СИВО), вычислительную систему (ВС), пульт контроля и управления (ПКУ) и устройства согласования (УС). Технический уровень реализации этой структуры определяет соотношения условий тренировки и условий космического полета, т. е. меру их подобия.

Условия тренировок

Рис. 8. Обобщённая структурная схема космического тренажёра

Современные тренажеры профессиональной подготовки космонавтов, представляющие уже третье поколение, реализуются на базе тренажерных систем или сетей [106].

Рассмотрим характеристики устройств космического тренажера, определяющих меру подобия воссоздаваемых на тренажере условий и в реальном полете, а также допустимые их отличия, обеспечивающие адекватность психических процессов, протекающих в том и другом случаях, благодаря адаптивным и мотивационным свойствам человека.

Рабочее место космонавта (РМК)

На специализированных и комплексных тренажерах транспортных кораблей и орбитальных станций установлены полноразмерные макеты или фрагменты ПКА, интерьер которых соответствует реальному ПКА. Все оборудование, система отображения информации (СОИ) и органы управления КА, с которыми работает или соприкасается экипаж, по всем характеристикам соответствует штатным. Та же часть оборудования, которая не включена в контур моделирования процессов управления ПКА (это относится прежде всего к специализированным тренажерам или стендам-тренажерам), выполнена в виде габаритно-весовых макетов.

Основным устройством контроля и управления ПКА, устанавливаемым на всех РМК, является пульт космонавта (рис. 9). Это многофункциональное оборудование, включающее командно-сигнальное устройство (КСУ), командно-сигнальные поля (КСП), индикатор контроля программ (ИКП), комбинированный электронный индикатор (КЭИ), БЧК, «Глобус» и другие приборы [43].

Условия тренировок

Рис. 9. Пульт космонавта: 1 — командно-сигнальное устройство (КСУ); 2 — приборная доска; 3 — командно-сигнальное поле; 4 — комбинированный электронный индикатор (КЭИ; 5 — индикатор контроля программ (ИКП)

Клавишами и сигнализаторами КСУ космонавт в нужные моменты времени управляет многочисленными системами ПКА или контролирует их параметры. КСП информирует экипаж о работе всех контролируемых систем корабля и обеспечивает управление ими. Информационное устройство КЭИ пульта космонавта также заменяет большое количество измерительных приборов, одновременно отображая на экране параметры функционирования систем ПКА. Так, при контроле системы жизнеобеспечения на КЭИ индицируется: температура, влажность, давление и концентрация СО2 в кабине ПКА. Кроме того, КЭИ подключен к наружным и внутренним телевизионным камерам, что позволяет контролировать с его помощью процесс стыковки.

Условия тренировок

Пульт управления тренажёра станции «Салют»

Посредством ИКП экипаж информируется о текущей автоматической программе управления ПКА, ее содержании, длительности, текущем времени и исполнении команд. Каждая команда имеет свой индекс исполнения, который гаснет после ее выполнения, что позволяет экипажу контролировать правильность прохождения программы.

Условия тренировок

Внутренний интерьер тренажёра транспортного корабля «Союз Т»

Средства информации, которыми оснащено РМК на тренажере, облегчает создание у космонавтов мысленного представления полета ПКА, его положения в пространстве и работы различных систем и агрегатов. Иллюзия полета космонавтов в ходе тренировочного упражнения усиливается также созданием в макете ПКА реальной акустической обстановки имитацией шума двигателей коррекции и ориентации, шума от срабатывания пиромеханизмов, а также имитацией радиосвязи с Центром управления полетом и наземными пунктами.

Дальнейшее приближение условий тренажера к полетным при отработке операции спуска ПКА с орбиты осуществляется имитацией физического движения ПКА посредством установки его макета на подвижной платформе. В общем случае подвижная платформа должна иметь шесть степеней свободы—три линейных перемещения и угловые: по курсу, крену и тангажу. Акселерационные ощущения космонавта в этом случае синхронизуются с изменениями внешней визуальной обстановки в иллюминаторах и оптических приборах макета ПКА.

Погрешность синхронизации составляет менее 0,1 с, так как время запаздывания визуального восприятия движения по отношению к моменту стимуляции вестибулярного аппарата у человека составляет менее 0,1 с [112].

Воспроизведение реальных скоростей и ускорений ПКА на этапе спуска ПКА с орбиты на динамическом тренажере во всей полноте невозможно. Но в этом нет особой необходимости. Обусловлено это особенностями вестибулярного аппарата человека, который воспринимает прежде всего переходные процессы как линейных, так и угловых скоростей.

С целью создания адекватного восприятия на тренажере реальных ускорений ПКА и имитируемых, фронты переходных процессов воспроизводятся в масштабе 1:1 до моментов, соответствующих пределу чувствительности, т. е. насыщению вестибулярного аппарата человека. Космонавт, выполняющий динамические операции в подвижной кабине, получает от фронта ускорения все первоначальные ощущения движения, которые необходимы для адекватного восприятия реальных и имитируемых условий.

После воспроизведения реального фронта ускорения платформа тормозится, причем спад фронта торможения проходит ниже порога чувствительности вестибулярного аппарата космонавта [44], иначе у него могут возникнуть ложные ощущения. При этом, исходя из предельных величин перемещения подвижной платформы по линейным и угловым перемещениям, она переводится в нейтральное положение со скоростями и ускорениями, неощутимыми для вестибулярного аппарата космонавта.

Созданию на РМК обстановки психологически адекватной реальной в значительной мере способствует также «реакция» внешней визуальной обстановки в иллюминаторах и оптических средствах наблюдения макета ПКА на управляющие воздействия космонавта при выполнении тренировочного упражнения.

Система имитации визуальной обстановки (СИВО)

Из всей информации о состоянии ПКА, воспринимаемой сенсорным полем космонавта, более 80% поступает по зрительному каналу. Поэтому так важна на космическом тренажере роль средств имитации визуальной обстановки.

Посредством СИВО на тренажере воспроизводится обстановка орбитального полета ПКА, поиск, обнаружение и стыковка с орбитальной станцией, спуск с орбиты и приземление с воспроизведением изображений звезд. Земли, Луны, Солнца и других космических объектов, находящихся на орбите, во всех пространственных и угловых положениях ПКА.

Космонавт, воспринимая на тренажере визуальную информацию и информацию, поступающую по другим каналам сенсорного поля (слуховому, вестибулярному и др.), формирует воздействия на органы управления ПКА, отчего изменяется пространственное положение ПКА, а следовательно, и визуальная обстановка. По ее изменению космонавт контролирует движения ПКА, выполняет необходимые маневры с ориентированием на местности или в пространстве. По соответствующим ориентирам он определяет углы ориентации ПКА, приращения этих углов, угловые скорости, скорость и направление движения, а также текущие координаты (плоскостные или пространственные).

Характер изменения визуальной обстановки в иллюминаторах и оптических средствах наблюдения ПКА определяется особенностями объектов наблюдения и динамическими характеристиками ПКА.

В связи с тем, что движение ПКА в общем случае осуществляется в трехмерном пространстве, структура изображения визуальной обстановки находится в зависимости от шести координат (трех декартовых и трех эйлеровых), что требует правильной передачи перспективы воспроизводимых визуальных условий. Немаловажную роль играют при этом характеристики средств наблюдения.

Кроме того, «реакция» визуальной обстановки на заданные тренируемым космонавтом управляющие воздействия должна быть идентична полетным условиям, иначе характеристики управления ПКА на тренажере будут искажены и восприятие условий тренажера не будет адекватно реальным.

В целом же воспроизведение визуальных условий на космическом тренажере относится к наиболее сложным техническим задачам. Обусловлено это такими обстоятельствами, как:

• необходимость сочетания в воспроизводимой визуальной обстановке компонентов с различной динамикой относительного движения (космические аппараты, звезды, планеты, Луна, Солнце, поверхность Земли с ориентирами на различном удалении и т. д.);

• широкий диапазон изменения масштаба отдельных объектов визуальной обстановки в процессе выполнения отдельной операции (орбитальной станции при стыковке, поверхности Земли при спуске транспортного корабля с орбиты и т. д.);

• большое разнообразие средств наблюдения ПКА с различными полями зрения и увеличением;

• необходимость существенного различия в характеристиках воссоздаваемых визуальных условий в зависимости от задач (динамическое управление ПКА, астронавигационные наблюдения и детальное, наблюдение объектов на поверхности Земли).

Учет этих особенностей существенно осложняет выбор способов реализации СИВО и диктует многообразие принципиальных подходов по воспроизведению визуальной обстановки на тренажерах.

При создании СИВО космических тренажеров применяются два основных направления. Первый базируется на физическом моделировании визуальных условий, в качестве носителей изображений которых используются масштабные модели, объемные или плоские макеты, диапозитивы и кинофильмы. Второе—основывается на математическом моделировании визуальной обстановки, изображение которой в виде математической модели хранится в памяти ЦВМ.

Применение того или иного способа реализации СИВО вытекает из анализа следующих, наиболее существенных, характеристик воспроизводимых условий космического полета.

Ширина поля зрения

Чем шире поле зрения, тем больший объем визуальной информации потенциально доступен космонавту. Однако пространственная разрешающая способность человеческого глаза за пределами небольшого участка центрального зрения сильно ограничена. Поэтому как бы ни велики были размеры поля зрения, объем оперативной информации, доступный космонавту, сравнительно невелик. С другой стороны, относительно высокая чувствительность периферийных участков сетчатки к восприятию движения в сравнении с пространственной разрешающей способностью обеспечивает фиксацию появления новых движущихся объектов почти в любом участке поля зрения. Определение оптимальных размеров имитируемого поля зрения всегда было одним из основных вопросов при создании СИВО космического тренажера.

Так исследования по определению влияния ограничения горизонтального размера поля зрения пилота на качество управления самолетом показали возможность его уменьшения без серьезного ухудшения качества [110]. Однако уменьшение горизонтального размера поля зрения до 20° оказалось уже неприемлемым. Вместе с тем доказано, что сравнительно ограниченное поле зрения может быть вполне приемлемо в случаях, когда пилоту хорошо известна местность, над которой он выполняет полет.

В СИВО космических тренажеров, исходя из технических возможностей, ширина поля зрения обычно ограничена 40—60° для иллюминаторов, а в других случаях эти значения определяются полями зрения оптических средств наблюдения, установленных на ПКА.

Диапазон яркости имитируемых изображений

В существующих СИВО диапазон яркости воспроизводимых визуальных объектов ограничен по сравнению с тем, что наблюдается в реальных условиях. Однако вследствие адаптивных свойств зрительного анализатора человека главную роль играет пространственное распределение относительных, а не абсолютных уровней яркости. Как только в поле имитируемого изображения достигнуты минимальные уровни яркости, необходимые для его эффективного восприятия, дальнейшее ее увеличение нецелесообразно [110].

Цвет имитируемых изображений

Цвет является одним из важных параметров, воспроизводимых на тренажерах визуальных условий. Однако стремиться к абсолютной точности воссоздания цветов, наблюдаемых в реальных условиях, нецелесообразно, поскольку сочетания цветов непрерывно изменяются, например, для поверхности Земли в течение дня, при изменении погоды и времени года. Цветовой диапазон существующих телевизионных систем в большинстве случаев достаточен для отображения визуальной обстановки на космических тренажерах.

Цвет, как параметр, важен там, где сочетаниями цветов кодируется необходимая пилоту информация (например, огни посадочной полосы), а в целом он относится к желательным параметрам СИВО, которые способствуют опознаванию наблюдаемых объектов, их относительных размеров и расстояний до них.

Разрешающая способность имитируемых изображений

Глаз человека способен различать пространственные детали с угловыми размерами в 1 у гл. мин и менее.

Разрешающая способность современных СИВО, построенных на телевизионной основе, дает разрешение не лучше 6—7 угл. мин и уступает разрешающей способности глаза человека, однако доказательств того, что это сказывается в сильной мере на формировании необходимых навыков у космонавтов, не имеется.

Несколько лучшее разрешение имеют СИВО, в которых используются диапозитивы и кинофильмы, но их применение дает значительные ограничения по другим параметрам.

Разрешающая способность телевизионной проекционной системы, сопряженной с коллимационной оптикой, выше, чем у обычных телевизионных устройств. Коллимационная оптика увеличивает кажущуюся глубину пространства, но ее недостаток связан с тем, что глаза космонавта должны постоянно находиться в зоне выходного зрачка коллиматора. В целом же коллимация обеспечивает формирование на тренажере картин внешней визуальной обстановки, более правдоподобных реальным условиям.

Перспектива и синхронизм имитируемых изображений с динамикой ПКА

При перемещении ПКА в пространстве в поле зрения космонавта происходит непрерывное изменение перспективы и относительных размеров наблюдаемых объектов по мере изменения расстояния до них. Изменение перспективы визуальной обстановки жестко связано с движением ПКА во времени и пространстве. Наблюдаемое космонавтом движение в реальных условиях согласуется с физическим движением, которое воздействует на вестибулярный аппарат и тактильную систему пилота. Поэтому на тренажере особая роль отводится синхронизации динамики визуальной обстановки с управляющими воздействиями космонавта. При появлении запаздываний визуальная обстановка может быть неправильно интерпретирована, что может привести к формированию у космонавтов отрицательных навыков.

Кроме того, на динамических тренажерах спуска ПКА с орбиты серьезное внимание, как уже отмечалось ранее, уделяется синхронизации акселерационных воздействий при имитации физического движения ПКА и визуального отображения этого движения. В реальных условиях эти процессы едины. Нарушения на тренажере синхронизма воздействия этих процессов на сенсорное поле космонавта может приводить к «конфликту в его ощущениях» [111].

Представленный анализ наиболее существенных сторон условий тренировки отражает как сложность технической реализации космических тренажеров, так и многогранность психических процессов, протекающих при обучении космонавтов на тренажерах. С позиций педагогической психологии эти процессы должны быть контролируемы и управляемы.

Похожие книги из библиотеки

Р-51 «Мустанг»

История истребителя Р-51 «Мустанг» началась в 1940 году. Британская закупочная комиссия (Britsh Purchasing Commision – ВРС) вела переговоры с фирмой Норт Америкэн Авиэйшен (NAA) о лицензионном производстве истребителей Р-40 для ВВС Великобритании (RAF). Но представители NAA предложили ВРС создать новый истребитель по собственному проекту фирмы. До этого Норт Америкэн строила только учебные самолёты, и ВРС с большой неохотой согласились рассмотреть их предложение. В январе 1940 года «Датч» Киндельбергер и Ли Этвуд, президент и вице-президент Норт Америкэн, предложили построить для RAF 320 истребителей, получивших фирменное обозначение NA-73. Самолёт должен был быть оснащён мотором фирмы Аллисон, стоить не более 40 000 долларов за штуку и иметь вооружение в соответствии с требованиями британцев. Это предложение было принято ВРС 10 апреля 1940 года – дата, которую принято считать началом истории «Мустанга».

Прим.: Полный комплект иллюстраций, расположенных как в печатном издании, собранные схемы на разворотах, подписи к иллюстрациям текстом.

Линейные крейсера “Фон дер Танн”, “Мольтке”, “Гебен” и “Зейдлиц”. 1907-1918 гг.

Начало первым линейным крейсерам положила в 1906 г. Англия. За исключением Германии и Японии, остальные морские державы, которые до этого времени строили броненосные крейсера, не только не продолжили их постройку, но и вообще впредь отказались от строительства тяжелых крейсеров. По принятым в немецком военно-морском флоте понятиям, тяжелые крейсера включали в себя броненосные и линейные. Такой тяжелый крейсер мог быть в некоторой степени равноценен линейному кораблю не своим относительно слабым вооружением, не довольно слабой броневой защитой, а более высокой скоростью. Конечно, этого можно было достигнуть только за счет использования большего водоизмещения.

В результате появился новый тип прочных и грозных кораблей, в создании которых Германия всегда была более удачлива, чем Англия.

Экипажи германских субмарин 1933-1945

Вряд ли какое-нибудь элитное формирование вооруженных сил Третьего Рейха понесло в войну потери большие, чем потери среди экипажей подводных лодок кригcмарине. В войну погибло примерно 75–80 % германских подводников, однако боевой дух питомцев Дениц оставался на исключительно высоком уровне до самого последнего дня войны в Европе. В массе своей германские подводники сохранили столь не типичный для Второй мировой войны дух рыцарства, хотя, конечно, и среди них встречались исключения.

Действия субмарин могли быть успешными только если команда действовала как единое целое, здесь каждый моряк зависел друг от друга. Экипажам лодок (48 человек на типе VII и 55 — на типе IX) по многу недель приходилось проводить в тесноте, без дневного света, а часто вообще в темноте, в жутких погодно-климатических условиях Атлантики, выполняя при этом такую необходимую для Рейха и крайне опасную для команды работу. Особые условия существования вырабатывали особые отношения внутри трудовых коллективов подводных лодок, тот самый элитный боевой дух.

После войны многие с позволения сказать «историки» пытались преуменьшить достижения людей Деница на ниве подводной войны. Более компетентный по сравнению с «историками» человек по фамилии Черчилль оценил работу U-ботов очень высоко:

— В войну я реально боялся одной-единственной угрозы — германских U-ботов.

Пехотный танк «Валентайн»

В начале 1938 года Военное министерство Великобритании предложило фирме Vickers-Armstrong Ltd. принять участие в производстве пехотного танка Mk II либо разработать боевую машину собственной конструкции по аналогичным тактико-техническим требованиям. Подобная альтернатива в предложении была не случайной: начиная с Первой мировой войны (многопрофильный концерн Vickers занимался танкостроением и создал за межвоенный период несколько очень удачных образцов. Во второй половине 30-х годов он являлся разработчиком и основным изготовителем пехотного танка Mk 1 Matilda I (А11) и крейсерских танков Mk I (А9) и Mk II (А10). Элементы этих машин и попытался совместить в одном проекте главный конструктор фирмы Лесли Литл. Задача оказалась не из легких — требовалось сохранить мощное бронирование, такое же, как у пехотного танка A11, использовав при этом моторно-трансмиссионную установку и ходовую часть крейсерских танков, спроектированную С. Хорстманом и капитаном Роки из фирмы Slow Motion Suspension Со. Ltd. Достичь этого можно было только путем уменьшения габаритов танка.

Приложение к журналу «МОДЕЛИСТ-КОНСТРУКТОР»